Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to inv...Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to investigate the response of rice cultivars to elevated air temperature (+1.5˚C higher than ambient) and soil amendments in regards to rice yield, yield scaled methane emissions and global warming potentials. The experimental findings revealed that replacement of inorganic fertilizers (20% - 40% of recommended NPKS) with Vermicompost, Azolla biofertilizer, enriched sugarcane pressmud, rice husk biochar and silicate fertilization increased rice yield 13.0% - 23.0%, and 11.0% - 19.0% during wet aman and dry boro season, respectively. However, seasonal cumulative CH4 fluxes were decreased by 9.0% - 25.0% and 5.0% - 19.0% during rainfed wet aman and irrigated dry boro rice cultivation, respectively with selected soil amendments. The maximum reduction in seasonal cumulative CH4 flux (19.0% - 25.0%) was recorded with silicate fertilization and azolla biofertilizer amendments (9.0% - 13.0%), whereas maximum grain yield increment 10.0 % - 14.0% was found with Vermicompost and Sugarcane pressmud amendments compared to chemical fertilization (100% NPKS) treated soils at ambient air temperature. However, rice grain yield decreased drastically 43.0% - 50.0% at elevated air temperature (3˚C higher than ambient air temperature), eventhough accelerated the total cumulative CH4 flux as well as GWPs in all treatments. Maximum seasonal mean GWPs were calculated at 391.0 kg CO2 eq·ha−1 in rice husk biochar followed by sugarcane pressmud (mean GWP 387.0 kg CO2 eq·ha−1), while least GWPs were calculated at 285 - 305 kg CO2 eq·ha−1 with silicate fertilizer and Azolla biofertilizer amendments. Rice cultivar BRRI dhan 87 revealed comparatively higher seasonal cumulative CH4 fluxes, yield scaled CH4 flux and GWPs than BRRI dhan 71 during wet aman rice growing season;while BRRI dhan 89 showed higher cumulative CH4 flux and GWPs than BINA dhan 10 during irrigated boro rice cultivation. Conclusively, inorganic fertilizers may be partially (20% - 40% of the recommended NPKS) replaced with Vermicompost, azolla biofertilizer, silicate fertilizer and enriched sugarcane pressmud compost for sustainable rice production and decreasing GWPs under elevated air temperature condition.展开更多
A study was conducted in Côte d’Ivoire to assess the after-effect of phosphate amendments on rice yields and soil properties. Eight types of amendments, composed of Moroccan phosphate rock (PRM) and triple super...A study was conducted in Côte d’Ivoire to assess the after-effect of phosphate amendments on rice yields and soil properties. Eight types of amendments, composed of Moroccan phosphate rock (PRM) and triple superphosphate were tested in three agroecological zones over three consecutive years of cultivation. This study revealed that the application of Moroccan phosphate rock (PRM) and/or triple superphosphate (TSP) did not significantly affect soil cation exchange capacity (CEC) and organic carbon (Corg) content. However, there was a negative residual effect of PRM-rich treatments on soil pH and K and N content, but the impact varies depending on the characteristics of the soils studied. Furthermore, nutrient losses, notably nitrogen from −17.5 to −267.7 kg/ha and potassium (−0.1 to 0.7 kg/ha), were observed in all treatments. Only phosphorus showed a positive balance of +49.56 to +52 kg/ha in PRM-rich treatments. Treatment T3, composed of 80% RPM and 20% TSP, was the most effective in all zones, with a relative increase in grain yields of over 100% compared to the control. These results suggest that the input of natural phosphate rock can significantly improve rice yields and soil properties in the studied agroecological zones in Côte d’Ivoire.展开更多
对已有的Z变换时域有限差分法(Z-transformation Finite Difference Time Domain,Z-FDTD)在电磁波与非均匀磁化等离子体中的传输特性分析的计算误差问题进行了研究,并探讨了一种修正计算误差的Z变换时域有限差分方法(Modified Z-transfo...对已有的Z变换时域有限差分法(Z-transformation Finite Difference Time Domain,Z-FDTD)在电磁波与非均匀磁化等离子体中的传输特性分析的计算误差问题进行了研究,并探讨了一种修正计算误差的Z变换时域有限差分方法(Modified Z-transform Finite Difference Time Domain,MZ-FDTD),以提升Z-FDTD方法对非均匀磁化等离子体的适用性。对MZ-FDTD和Z-FDTD之间的计算误差问题,通过严格的公式推导求得该误差的计算公式,并引入误差分析因子,对比分析了该误差受空间步长和非均匀磁化等离子体的物理特性的影响特征,在充分的误差分析与网格参数对比后,以电磁波在非均匀磁化等离子体中的传输特性为分析目标,举例说明了MZ-FDTD的优越性。研究结果表明,相比于经典Z-FDTD,通过MZ-FDTD方法计算得到的数值结果具有更高的计算准确度,较低的运行时间和较少的运行内存占用。此外,对电磁波在非均匀等离子体中传输特性分析的举例说明也证明了相比于Z-FDTD,优化的Z-FDTD方法无论是在较低频段还是较高频段都保持较好的稳定性。在今后的工作中,使用MZ-FDTD方法研究非均匀磁化等离子体问题将会获得更好的计算结果,这项工作中的误差分析方法也将对某些计算电磁学在等离子体中的应用与优化工作起到一定的帮助作用。展开更多
文摘Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to investigate the response of rice cultivars to elevated air temperature (+1.5˚C higher than ambient) and soil amendments in regards to rice yield, yield scaled methane emissions and global warming potentials. The experimental findings revealed that replacement of inorganic fertilizers (20% - 40% of recommended NPKS) with Vermicompost, Azolla biofertilizer, enriched sugarcane pressmud, rice husk biochar and silicate fertilization increased rice yield 13.0% - 23.0%, and 11.0% - 19.0% during wet aman and dry boro season, respectively. However, seasonal cumulative CH4 fluxes were decreased by 9.0% - 25.0% and 5.0% - 19.0% during rainfed wet aman and irrigated dry boro rice cultivation, respectively with selected soil amendments. The maximum reduction in seasonal cumulative CH4 flux (19.0% - 25.0%) was recorded with silicate fertilization and azolla biofertilizer amendments (9.0% - 13.0%), whereas maximum grain yield increment 10.0 % - 14.0% was found with Vermicompost and Sugarcane pressmud amendments compared to chemical fertilization (100% NPKS) treated soils at ambient air temperature. However, rice grain yield decreased drastically 43.0% - 50.0% at elevated air temperature (3˚C higher than ambient air temperature), eventhough accelerated the total cumulative CH4 flux as well as GWPs in all treatments. Maximum seasonal mean GWPs were calculated at 391.0 kg CO2 eq·ha−1 in rice husk biochar followed by sugarcane pressmud (mean GWP 387.0 kg CO2 eq·ha−1), while least GWPs were calculated at 285 - 305 kg CO2 eq·ha−1 with silicate fertilizer and Azolla biofertilizer amendments. Rice cultivar BRRI dhan 87 revealed comparatively higher seasonal cumulative CH4 fluxes, yield scaled CH4 flux and GWPs than BRRI dhan 71 during wet aman rice growing season;while BRRI dhan 89 showed higher cumulative CH4 flux and GWPs than BINA dhan 10 during irrigated boro rice cultivation. Conclusively, inorganic fertilizers may be partially (20% - 40% of the recommended NPKS) replaced with Vermicompost, azolla biofertilizer, silicate fertilizer and enriched sugarcane pressmud compost for sustainable rice production and decreasing GWPs under elevated air temperature condition.
文摘A study was conducted in Côte d’Ivoire to assess the after-effect of phosphate amendments on rice yields and soil properties. Eight types of amendments, composed of Moroccan phosphate rock (PRM) and triple superphosphate were tested in three agroecological zones over three consecutive years of cultivation. This study revealed that the application of Moroccan phosphate rock (PRM) and/or triple superphosphate (TSP) did not significantly affect soil cation exchange capacity (CEC) and organic carbon (Corg) content. However, there was a negative residual effect of PRM-rich treatments on soil pH and K and N content, but the impact varies depending on the characteristics of the soils studied. Furthermore, nutrient losses, notably nitrogen from −17.5 to −267.7 kg/ha and potassium (−0.1 to 0.7 kg/ha), were observed in all treatments. Only phosphorus showed a positive balance of +49.56 to +52 kg/ha in PRM-rich treatments. Treatment T3, composed of 80% RPM and 20% TSP, was the most effective in all zones, with a relative increase in grain yields of over 100% compared to the control. These results suggest that the input of natural phosphate rock can significantly improve rice yields and soil properties in the studied agroecological zones in Côte d’Ivoire.
文摘对已有的Z变换时域有限差分法(Z-transformation Finite Difference Time Domain,Z-FDTD)在电磁波与非均匀磁化等离子体中的传输特性分析的计算误差问题进行了研究,并探讨了一种修正计算误差的Z变换时域有限差分方法(Modified Z-transform Finite Difference Time Domain,MZ-FDTD),以提升Z-FDTD方法对非均匀磁化等离子体的适用性。对MZ-FDTD和Z-FDTD之间的计算误差问题,通过严格的公式推导求得该误差的计算公式,并引入误差分析因子,对比分析了该误差受空间步长和非均匀磁化等离子体的物理特性的影响特征,在充分的误差分析与网格参数对比后,以电磁波在非均匀磁化等离子体中的传输特性为分析目标,举例说明了MZ-FDTD的优越性。研究结果表明,相比于经典Z-FDTD,通过MZ-FDTD方法计算得到的数值结果具有更高的计算准确度,较低的运行时间和较少的运行内存占用。此外,对电磁波在非均匀等离子体中传输特性分析的举例说明也证明了相比于Z-FDTD,优化的Z-FDTD方法无论是在较低频段还是较高频段都保持较好的稳定性。在今后的工作中,使用MZ-FDTD方法研究非均匀磁化等离子体问题将会获得更好的计算结果,这项工作中的误差分析方法也将对某些计算电磁学在等离子体中的应用与优化工作起到一定的帮助作用。