Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomen...Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomenon during particle migration, significantly impacts the deep plugging effect. Due to the complexity of the process, few studies have been conducted on this subject. In this paper, we conducted DGP flow experiments using a physical model of a multi-point sandpack under various injection rates and particle sizes. Particle size and concentration tests were performed at each measurement point to investigate the transportation behavior of particles in the deep part of the reservoir. The residual resistance coefficient and concentration changes along the porous media were combined to analyze the plugging performance of DGPs. Furthermore, the particle breakage along their path was revealed by analyzing the changes in particle size along the way. A mathematical model of breakage and concentration changes along the path was established. The results showed that the passage after breakage is a significant migration behavior of particles in porous media. The particles were reduced to less than half of their initial size at the front of the porous media. Breakage is an essential reason for the continuous decreases in particle concentration, size, and residual resistance coefficient. However, the particles can remain in porous media after breakage and play a significant role in deep plugging. Higher injection rates or larger particle sizes resulted in faster breakage along the injection direction, higher degrees of breakage, and faster decreases in residual resistance coefficient along the path. These conditions also led to a weaker deep plugging ability. Smaller particles were more evenly retained along the path, but more particles flowed out of the porous media, resulting in a poor deep plugging effect. The particle size is a function of particle size before injection, transport distance, and different injection parameters(injection rate or the diameter ratio of DGP to throat). Likewise, the particle concentration is a function of initial concentration, transport distance, and different injection parameters. These models can be utilized to optimize particle injection parameters, thereby achieving the goal of fine-tuning oil displacement.展开更多
A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDO...A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDOT).The simulation results show that the coating of primary NMC particles significantly reduces the stress generation by efficiently accommodating the volume change associated with the lithium diffusion,and the coating layer plays roles both as a cushion against the volume change and a channel for the lithium transport,promoting the lithium distribution across the secondary particles more homogeneously.Besides,the lower stiffness,higher ionic conductivity,and larger thickness of the coating layer improve the stress mitigation.This paper provides a mathematical framework for calculating the chemo-mechanical responses of anisotropic electrode materials and fundamental insights into how the coating of NMC active particles mitigates stress levels.展开更多
It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b...It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.展开更多
The Brownian motion of spherical and ellipsoidal self-propelled particles was simulated without considering the effect of inertia and using the Langevin equation and the diffusion coefficient of ellipsoidal particles ...The Brownian motion of spherical and ellipsoidal self-propelled particles was simulated without considering the effect of inertia and using the Langevin equation and the diffusion coefficient of ellipsoidal particles derived by Perrin.The P´eclet number(Pe)was introduced to measure the relative strengths of self-propelled and Brownian motions.We found that the motion state of spherical and ellipsoid self-propelled particles changed significantly under the influence of Brownian motion.For spherical particles,there were three primary states of motion:1)when Pe<30,the particles were still significantly affected by Brownian motion;2)when Pe>30,the self-propelled velocities of the particles were increasing;and 3)when Pe>100,the particles were completely controlled by the self-propelled velocities and the Brownian motion was suppressed.In the simulation of the ellipsoidal self-propelled particles,we found that the larger the aspect ratio of the particles,the more susceptible they were to the influence of Brownian motion.In addition,the value interval of Pe depended on the aspect ratio.Finally,we found that the directional motion ability of the ellipsoidal self-propelled particles was much weaker than that of the spherical self-propelled particles.展开更多
High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can ...High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles.展开更多
This work shows a didactic model representative (GPM) of the particles described in the Standard Model (SM). Particles are represented by geometric forms corresponding to geometric structures of coupled quantum oscill...This work shows a didactic model representative (GPM) of the particles described in the Standard Model (SM). Particles are represented by geometric forms corresponding to geometric structures of coupled quantum oscillators. From the didactic hypotheses of the model emerges an in-depth phenomenology of particles that is fully compatible with that of SM. Thanks to this model, we can calculate “geometrically” the mass of Higgs’s Boson and the mass of the pair “muon and muonic neutrino”, and, by the geometric shapes of leptons and bosons, we can also solve crucial aspects of SM physics as the neutrinos’ oscillations and the intrinsic chirality of the neutrino and antineutrino.展开更多
The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regi...The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased.展开更多
Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid ...Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance.展开更多
We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey s...We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.展开更多
Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,t...Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,the influence of diamond nanoparticles(DNPs)on the tribological properties of lubricants is investigated through friction experiments.Additionally,the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics(MD)simulations.The results show that DNPs can drastically lower the lubricant's friction coefficientμfrom 0.21 to 0.117.The shearing process reveals that as the aspect ratio(α)of the nanoparticles approaches 1.0,the friction performance improves,and wear on the wall diminishes.At the same time,the shape of the nanoparticles tends to be spherical.When 0.85≤α≤1.0,rolling is ellipsoidal particles'main form of motion,and the friction force changes according to a periodic sinusoidal law.In the range of 0.80≤α<0.85,ellipsoidal particles primarily exhibit sliding as the dominant movement mode.Asαdecreases within this range,the friction force progressively increases.The friction coefficientμcalculated through MD simulation is 0.128,which is consistent with the experimental data.展开更多
Radiant syngas cooler(RSC)is widely used as a waste heat recovery equipment in industrial gasification.In this work,an RSC with radiation screens is established and the impact of gaseous radiative property models,gas ...Radiant syngas cooler(RSC)is widely used as a waste heat recovery equipment in industrial gasification.In this work,an RSC with radiation screens is established and the impact of gaseous radiative property models,gas components,and ash particles on heat transfer is investigated by the numerical simulation method.Considering the syngas components and the pressure environment of the RSC,a modified weighted-sum-of-gray-gases model was developed.The modified model shows high accuracy in validation.In computational fluid dynamics simulation,the calculated steam production is only 0.63%in error with the industrial data.Compared with Smith's model,the temperature decay along the axial direction calculated by the modified model is faster.Syngas components are of great significance to heat recovery capacity,especially when the absorbing gas fraction is less than 10%.After considering the influence of particles,the outlet temperature and the proportion of radiative heat transfer are less affected,but the difference in steam output reaches 2.7 t·h^(-1).The particle deposition on the wall greatly reduces the heat recovery performance of an RSC.展开更多
Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties....Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties.In this study,we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data.We employed super-spheroids and coated super-spheroids to account for the particles’non-sphericity,inhomogeneity,and hysteresis effect during the deliquescence and crystallization processes.To compute the singlescattering properties of sea salt aerosols,we used the state-of-the-art invariant imbedding T-matrix method,which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12μm at a wavelength of 532 nm.Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity(RH)levels.Importantly,we observed that large-size particles with diameters larger than 4μm had a substantial impact on the optical properties of sea salt aerosols,which has not been accounted for in previous studies.Specifically,excluding particles with diameters larger than 4μm led to underestimating the scattering and backscattering coefficients by 27%−38%and 43%−60%,respectively,for the ACE-Asia field campaign.Additionally,the depolarization ratios were underestimated by 0.15 within the 50%−70%RH range.These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.展开更多
In paper[Chin.Phys.B 32070308(2023)],Xing et al.proposed a semi-quantum secret sharing protocol by using single particles.We study the security of the proposed protocol and find that it is not secure,that is,the three...In paper[Chin.Phys.B 32070308(2023)],Xing et al.proposed a semi-quantum secret sharing protocol by using single particles.We study the security of the proposed protocol and find that it is not secure,that is,the three dishonest agents,Bob,Charlie and Emily can collude to obtain Alice's secret without the help of David.展开更多
All eukaryotic cells can secrete extracellular vesicles, which have a double-membrane structure and are important players in the intercellular communication involved in a variety of important biological processes. Pla...All eukaryotic cells can secrete extracellular vesicles, which have a double-membrane structure and are important players in the intercellular communication involved in a variety of important biological processes. Platelets form platelet-derived microparticles (PMPs) in response to activation, injury, or apoptosis. This review introduces the origin, pathway, and biological functions of PMPs and their importance in physiological and pathological processes. In addition, we review the potential applications of PMPs in cancer, vascular homeostasis, thrombosis, inflammation, neural regeneration, biomarkers, and drug carriers to achieve targeted drug delivery. In addition, we comprehensively report on the origin, biological functions, and applications of PMPs. The clinical transformation, high heterogeneity, future development direction, and limitations of the current research on PMPs are also discussed in depth. Evidence has revealed that PMPs play an important role in cell-cell communication, providing clues for the development of PMPs as carriers for relevant cell-targeted drugs. The development history and prospects of PMPs and their cargos are explored in this guidebook.展开更多
The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were coll...The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.展开更多
This work focuses on numerically studying hydrodynamic interaction between a passive particle and a self-propelled particle,termed a squirmer,by using a two-dimensional lattice Boltzmann method(LBM).It is found that t...This work focuses on numerically studying hydrodynamic interaction between a passive particle and a self-propelled particle,termed a squirmer,by using a two-dimensional lattice Boltzmann method(LBM).It is found that the squirmer can capture a passive particle and propel it simultaneously,provided the passive particle is situated within the squirmer's wake.Our research shows that the critical capture distance,which determines whether the particle is captured,primarily depends on the intensity of the squirmer's dipolarity.The stronger dipolarity of squirmer results in an increased critical capture distance.Conversely,the Reynolds number is found to have minimal influence on this interaction.Interestingly,the passive particle,when driven by the squirmer's wake,contributes to a reduction in the squirmer's drag.This results in a mutual acceleration for both particles.Our findings can provide valuable perspectives for formulating the principles of reducing the drag of micro-swimmers and help to achieve the goal of using micro-swimmers to transport goods without physical tethers.展开更多
The Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-eA<sub>μ</sub>)Ψ=mc<sup>2</sup>Ψ describes the bound states of the electron under the action of external potentials...The Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-eA<sub>μ</sub>)Ψ=mc<sup>2</sup>Ψ describes the bound states of the electron under the action of external potentials, A<sub>μ</sub>. We assumed that the fundamental form of the Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-S<sub>μ</sub>)Ψ=0 should describe the stable particles (the electron, the proton and the dark-matter-particle (dmp)) bound to themselves under the action of their own potentials S<sub>μ</sub>. The new equation reveals that self energy is consequence of self action, it also reveals that the spin angular momentum is consequence of the dynamic structure of the stable particles. The quantitative results are the determination of their relative masses as well as the determination of the electromagnetic coupling constant.展开更多
In this study,the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m3 and graini...In this study,the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m3 and graining 25-44.5 mm.The test results revealed that the magnitude of increase in the solid transport rate due to the changes in the three tested parameters between compressed air velocity,submergence ratio,and feeding coal possibility was not the same,which are stand in range of 20%,75%,and 40%,respectively.Hence,creating the optimal airlift pump performance is highly dependent on submergence ratio.More importantly,we measured the solid volume fraction using the method of one-way valves in order to minimize the disadvantages of conventional devices,such as fast speed camera and conductivity ring sensor.The results confirmed that the volume fraction of the solid phase in the transfer process was always less than 12%.To validate present experimental data,the existing empirical correlations together with the theoretical equations related to the multiphase flow was used.The overall agreement between the theory and experimental solid delivery results was particularly good instead of the first stage of conveying process.This drawback can be corrected by omitting the role of friction and shear stress at low air income velocity.It was also found that the model developed by Kalenik failed to predict the performance of our airlift operation in terms of the mass flow rate of the coal particles.展开更多
The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A se...The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications.展开更多
The capture,regeneration,and conversion of CO_(2) from ambient air and flue gas streams are critical aspects of mitigating global warming.Solid sorbents for CO_(2) absorption are very promising as they have high mass ...The capture,regeneration,and conversion of CO_(2) from ambient air and flue gas streams are critical aspects of mitigating global warming.Solid sorbents for CO_(2) absorption are very promising as they have high mass transfer areas without energy input and reduce emissions and minimize corrosion as compared to liquid sorbents.However,precisely tunable solid CO_(2) sorbents are difficult to produce.Here,we demonstrate the high-throughput production of hydrogel-based CO_(2)-absorbing particles via liquid jetting.By wrapping a liquid jet consisting of an aqueous solution of cross-linkable branched polyethylenimine(PEI)with a layer of suspension containing hydrophobic silica nanoparticles,monodisperse droplets with a silica nanoparticle coating layer was formed in the air.A stable Pickering emulsion containing PEI droplets was obtained after these ejected droplets were collected in a heated oil bath.The droplets turn into mm-sized particles after thermal curing in the bath.The diameter,PEI content,and silica content of the particles were systematically varied,and their CO_(2) absorption was measured as a function of time.Steam regeneration of the particles enabled cyclic testing,revealing a CO_(2) absorption capacity of 6.5±0.5 mol kg^(−1)solid PEI in pure CO_(2) environments and 0.7±0.3 mol kg^(−1)solid PEI for direct air capture.Several thousands of particles were produced per second at a rate of around 0.5 kg per hour,with a single nozzle.This process can be further scaled by parallelization.The complete toolbox for the design,fabrication,testing,and regeneration of functional hydrogel particles provides a powerful route toward novel solid sorbents for regenerative CO_(2) capture.展开更多
基金supported by the Major National Science and Technology Project(No.2016ZX05054011)。
文摘Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomenon during particle migration, significantly impacts the deep plugging effect. Due to the complexity of the process, few studies have been conducted on this subject. In this paper, we conducted DGP flow experiments using a physical model of a multi-point sandpack under various injection rates and particle sizes. Particle size and concentration tests were performed at each measurement point to investigate the transportation behavior of particles in the deep part of the reservoir. The residual resistance coefficient and concentration changes along the porous media were combined to analyze the plugging performance of DGPs. Furthermore, the particle breakage along their path was revealed by analyzing the changes in particle size along the way. A mathematical model of breakage and concentration changes along the path was established. The results showed that the passage after breakage is a significant migration behavior of particles in porous media. The particles were reduced to less than half of their initial size at the front of the porous media. Breakage is an essential reason for the continuous decreases in particle concentration, size, and residual resistance coefficient. However, the particles can remain in porous media after breakage and play a significant role in deep plugging. Higher injection rates or larger particle sizes resulted in faster breakage along the injection direction, higher degrees of breakage, and faster decreases in residual resistance coefficient along the path. These conditions also led to a weaker deep plugging ability. Smaller particles were more evenly retained along the path, but more particles flowed out of the porous media, resulting in a poor deep plugging effect. The particle size is a function of particle size before injection, transport distance, and different injection parameters(injection rate or the diameter ratio of DGP to throat). Likewise, the particle concentration is a function of initial concentration, transport distance, and different injection parameters. These models can be utilized to optimize particle injection parameters, thereby achieving the goal of fine-tuning oil displacement.
基金the National Research Foundation of Korea(Nos.2018R1A5A7023490 and 2022R1A2C1003003)。
文摘A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDOT).The simulation results show that the coating of primary NMC particles significantly reduces the stress generation by efficiently accommodating the volume change associated with the lithium diffusion,and the coating layer plays roles both as a cushion against the volume change and a channel for the lithium transport,promoting the lithium distribution across the secondary particles more homogeneously.Besides,the lower stiffness,higher ionic conductivity,and larger thickness of the coating layer improve the stress mitigation.This paper provides a mathematical framework for calculating the chemo-mechanical responses of anisotropic electrode materials and fundamental insights into how the coating of NMC active particles mitigates stress levels.
基金supported by the Key Research and Development Plan of Shandong Province(the Major Scientific and Technological Innovation Projects,2021ZDSYS13)the Natural Science Foundation of Shandong Province(ZR2021MB135)Natural Science Foundation of Shandong Province(ZR2021ME224).
文摘It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12372251 and 12132015)the Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant No.2023YW69).
文摘The Brownian motion of spherical and ellipsoidal self-propelled particles was simulated without considering the effect of inertia and using the Langevin equation and the diffusion coefficient of ellipsoidal particles derived by Perrin.The P´eclet number(Pe)was introduced to measure the relative strengths of self-propelled and Brownian motions.We found that the motion state of spherical and ellipsoid self-propelled particles changed significantly under the influence of Brownian motion.For spherical particles,there were three primary states of motion:1)when Pe<30,the particles were still significantly affected by Brownian motion;2)when Pe>30,the self-propelled velocities of the particles were increasing;and 3)when Pe>100,the particles were completely controlled by the self-propelled velocities and the Brownian motion was suppressed.In the simulation of the ellipsoidal self-propelled particles,we found that the larger the aspect ratio of the particles,the more susceptible they were to the influence of Brownian motion.In addition,the value interval of Pe depended on the aspect ratio.Finally,we found that the directional motion ability of the ellipsoidal self-propelled particles was much weaker than that of the spherical self-propelled particles.
基金Project supported by the National Natural Science Foundation of China (Grant No.12064034)the Leading Talents Program of Science and Technology Innovation in Ningxia Hui Autonomous Region,China (Grant No.2020GKLRLX08)+2 种基金the Natural Science Foundation of Ningxia Hui Auatonomous Region,China (Grant Nos.2022AAC03643,2022AAC03117,and 2018AAC03029)the Major Science and Technology Project of Ningxia Hui Autonomous Region,China (Grant No.2022BDE03006)the Natural Science Project of the Higher Education Institutions of Ningxia Hui Autonomous Region,China (Grant No.13-1069)。
文摘High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles.
文摘This work shows a didactic model representative (GPM) of the particles described in the Standard Model (SM). Particles are represented by geometric forms corresponding to geometric structures of coupled quantum oscillators. From the didactic hypotheses of the model emerges an in-depth phenomenology of particles that is fully compatible with that of SM. Thanks to this model, we can calculate “geometrically” the mass of Higgs’s Boson and the mass of the pair “muon and muonic neutrino”, and, by the geometric shapes of leptons and bosons, we can also solve crucial aspects of SM physics as the neutrinos’ oscillations and the intrinsic chirality of the neutrino and antineutrino.
基金supported by Shandong Provincial Natural Science Foundation (ZR2023MB038)National Natural Science Foundation of China (21808232 and 21978143)Financial support from the Qingdao University of Science and Technology
文摘The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased.
基金financially supported by the National Natural Science Foundation of China(No.51771125)the Sichuan Province Science and Technology Support Program(No.2020YFG0102)。
文摘Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance.
文摘We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.
基金Supported by National Natural Science Foundation of China (Grant No.52275178)Fujian industry university cooperation project (Grant No.2020H6025)。
文摘Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,the influence of diamond nanoparticles(DNPs)on the tribological properties of lubricants is investigated through friction experiments.Additionally,the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics(MD)simulations.The results show that DNPs can drastically lower the lubricant's friction coefficientμfrom 0.21 to 0.117.The shearing process reveals that as the aspect ratio(α)of the nanoparticles approaches 1.0,the friction performance improves,and wear on the wall diminishes.At the same time,the shape of the nanoparticles tends to be spherical.When 0.85≤α≤1.0,rolling is ellipsoidal particles'main form of motion,and the friction force changes according to a periodic sinusoidal law.In the range of 0.80≤α<0.85,ellipsoidal particles primarily exhibit sliding as the dominant movement mode.Asαdecreases within this range,the friction force progressively increases.The friction coefficientμcalculated through MD simulation is 0.128,which is consistent with the experimental data.
基金supported by the National Natural Science Foundation of China(21878082).
文摘Radiant syngas cooler(RSC)is widely used as a waste heat recovery equipment in industrial gasification.In this work,an RSC with radiation screens is established and the impact of gaseous radiative property models,gas components,and ash particles on heat transfer is investigated by the numerical simulation method.Considering the syngas components and the pressure environment of the RSC,a modified weighted-sum-of-gray-gases model was developed.The modified model shows high accuracy in validation.In computational fluid dynamics simulation,the calculated steam production is only 0.63%in error with the industrial data.Compared with Smith's model,the temperature decay along the axial direction calculated by the modified model is faster.Syngas components are of great significance to heat recovery capacity,especially when the absorbing gas fraction is less than 10%.After considering the influence of particles,the outlet temperature and the proportion of radiative heat transfer are less affected,but the difference in steam output reaches 2.7 t·h^(-1).The particle deposition on the wall greatly reduces the heat recovery performance of an RSC.
基金supported by the National Natural Science Foundation of China(Grant Nos.42022038,and 42090030).
文摘Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties.In this study,we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data.We employed super-spheroids and coated super-spheroids to account for the particles’non-sphericity,inhomogeneity,and hysteresis effect during the deliquescence and crystallization processes.To compute the singlescattering properties of sea salt aerosols,we used the state-of-the-art invariant imbedding T-matrix method,which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12μm at a wavelength of 532 nm.Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity(RH)levels.Importantly,we observed that large-size particles with diameters larger than 4μm had a substantial impact on the optical properties of sea salt aerosols,which has not been accounted for in previous studies.Specifically,excluding particles with diameters larger than 4μm led to underestimating the scattering and backscattering coefficients by 27%−38%and 43%−60%,respectively,for the ACE-Asia field campaign.Additionally,the depolarization ratios were underestimated by 0.15 within the 50%−70%RH range.These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.
基金Project supported by the Offline Course Program of“Experiment of College Physics”in the 2022-year Anhui Provincial Quality Engineering Program (Grant No.2022xxkc134)the Program for Academic Leader Reserve Candidates in Tongling University (Grant Nos.2020tlxyxs43 and 2014tlxyxs30)+1 种基金the Talent Scientific Research Foundation of Tongling University (Grant No.2015tlxyrc01)the 2014 year Program for Excellent Youth Talents in University of Anhui Province。
文摘In paper[Chin.Phys.B 32070308(2023)],Xing et al.proposed a semi-quantum secret sharing protocol by using single particles.We study the security of the proposed protocol and find that it is not secure,that is,the three dishonest agents,Bob,Charlie and Emily can collude to obtain Alice's secret without the help of David.
基金supported by the National Science Fund for Distinguished Young Scholars(No:81901099 and 81703427)the 64th batch of China Postdoctoral Science Foundation(No:2018M641731).
文摘All eukaryotic cells can secrete extracellular vesicles, which have a double-membrane structure and are important players in the intercellular communication involved in a variety of important biological processes. Platelets form platelet-derived microparticles (PMPs) in response to activation, injury, or apoptosis. This review introduces the origin, pathway, and biological functions of PMPs and their importance in physiological and pathological processes. In addition, we review the potential applications of PMPs in cancer, vascular homeostasis, thrombosis, inflammation, neural regeneration, biomarkers, and drug carriers to achieve targeted drug delivery. In addition, we comprehensively report on the origin, biological functions, and applications of PMPs. The clinical transformation, high heterogeneity, future development direction, and limitations of the current research on PMPs are also discussed in depth. Evidence has revealed that PMPs play an important role in cell-cell communication, providing clues for the development of PMPs as carriers for relevant cell-targeted drugs. The development history and prospects of PMPs and their cargos are explored in this guidebook.
基金the SINOPEC(124015)and the State Key Laboratory of Engines at Tianjin University(No.K2022-06).
文摘The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12132015 and 11972336)。
文摘This work focuses on numerically studying hydrodynamic interaction between a passive particle and a self-propelled particle,termed a squirmer,by using a two-dimensional lattice Boltzmann method(LBM).It is found that the squirmer can capture a passive particle and propel it simultaneously,provided the passive particle is situated within the squirmer's wake.Our research shows that the critical capture distance,which determines whether the particle is captured,primarily depends on the intensity of the squirmer's dipolarity.The stronger dipolarity of squirmer results in an increased critical capture distance.Conversely,the Reynolds number is found to have minimal influence on this interaction.Interestingly,the passive particle,when driven by the squirmer's wake,contributes to a reduction in the squirmer's drag.This results in a mutual acceleration for both particles.Our findings can provide valuable perspectives for formulating the principles of reducing the drag of micro-swimmers and help to achieve the goal of using micro-swimmers to transport goods without physical tethers.
文摘The Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-eA<sub>μ</sub>)Ψ=mc<sup>2</sup>Ψ describes the bound states of the electron under the action of external potentials, A<sub>μ</sub>. We assumed that the fundamental form of the Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-S<sub>μ</sub>)Ψ=0 should describe the stable particles (the electron, the proton and the dark-matter-particle (dmp)) bound to themselves under the action of their own potentials S<sub>μ</sub>. The new equation reveals that self energy is consequence of self action, it also reveals that the spin angular momentum is consequence of the dynamic structure of the stable particles. The quantitative results are the determination of their relative masses as well as the determination of the electromagnetic coupling constant.
基金supported by the European Research Council(Research Fund for Coal and Steel)under Grant Agreement number 800757.
文摘In this study,the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m3 and graining 25-44.5 mm.The test results revealed that the magnitude of increase in the solid transport rate due to the changes in the three tested parameters between compressed air velocity,submergence ratio,and feeding coal possibility was not the same,which are stand in range of 20%,75%,and 40%,respectively.Hence,creating the optimal airlift pump performance is highly dependent on submergence ratio.More importantly,we measured the solid volume fraction using the method of one-way valves in order to minimize the disadvantages of conventional devices,such as fast speed camera and conductivity ring sensor.The results confirmed that the volume fraction of the solid phase in the transfer process was always less than 12%.To validate present experimental data,the existing empirical correlations together with the theoretical equations related to the multiphase flow was used.The overall agreement between the theory and experimental solid delivery results was particularly good instead of the first stage of conveying process.This drawback can be corrected by omitting the role of friction and shear stress at low air income velocity.It was also found that the model developed by Kalenik failed to predict the performance of our airlift operation in terms of the mass flow rate of the coal particles.
基金supported by the National Natural Science Foundation of China(21908234)the National Key Research&Development Program of China(2020YFB0606404)+1 种基金the Inner Mongolia Science and Technology Agency Program(2019CG058)Shanxi Province Natural Science Foundation(202103021223063).
文摘The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications.
基金supported by the European Regional Development Fund(CONTROL,EFRO#00943).
文摘The capture,regeneration,and conversion of CO_(2) from ambient air and flue gas streams are critical aspects of mitigating global warming.Solid sorbents for CO_(2) absorption are very promising as they have high mass transfer areas without energy input and reduce emissions and minimize corrosion as compared to liquid sorbents.However,precisely tunable solid CO_(2) sorbents are difficult to produce.Here,we demonstrate the high-throughput production of hydrogel-based CO_(2)-absorbing particles via liquid jetting.By wrapping a liquid jet consisting of an aqueous solution of cross-linkable branched polyethylenimine(PEI)with a layer of suspension containing hydrophobic silica nanoparticles,monodisperse droplets with a silica nanoparticle coating layer was formed in the air.A stable Pickering emulsion containing PEI droplets was obtained after these ejected droplets were collected in a heated oil bath.The droplets turn into mm-sized particles after thermal curing in the bath.The diameter,PEI content,and silica content of the particles were systematically varied,and their CO_(2) absorption was measured as a function of time.Steam regeneration of the particles enabled cyclic testing,revealing a CO_(2) absorption capacity of 6.5±0.5 mol kg^(−1)solid PEI in pure CO_(2) environments and 0.7±0.3 mol kg^(−1)solid PEI for direct air capture.Several thousands of particles were produced per second at a rate of around 0.5 kg per hour,with a single nozzle.This process can be further scaled by parallelization.The complete toolbox for the design,fabrication,testing,and regeneration of functional hydrogel particles provides a powerful route toward novel solid sorbents for regenerative CO_(2) capture.