Background: Cinnamicaldehyde(CA) is a key flavor compound in cinnamon essential oil possessing various bioactivities. Tight junction(TJ) proteins are vital for the maintenance of intestinal epithelial barrier fun...Background: Cinnamicaldehyde(CA) is a key flavor compound in cinnamon essential oil possessing various bioactivities. Tight junction(TJ) proteins are vital for the maintenance of intestinal epithelial barrier function,transport, absorption and utilization of dietary amino acids and other nutrients. In this study, we tested the hypothesis that CA may regulate the expression of TJ proteins and amino acid transporters in intestinal porcine epithelial cells(IPEC-1) isolated from neonatal pigs.Results: Compared with the control, cells incubated with 25 μmol/L CA had increased transepithelial electrical resistance(TEER) and decreased paracellular intestinal permeability. The beneficial effect of CA on mucosal barrier function was associated with enhanced protein abundance for claudin-4, zonula occludens(ZO)-1, ZO-2, and ZO-3. Immunofluorescence staining showed that 25 μmol/L CA promoted the localization of claudin-1 and claudin-3 to the plasma membrane without affecting the localization of other TJ proteins, including claudin-4, occludin,ZO-1, ZO-2, and ZO-3, compared with the control cells. Moreover, protein abundances for rBAT, xCT and LAT2 in IPEC-1 cells were enhanced by 25 μmol/L CA, while that for EAAT3 was not affected.Conclusions: CA improves intestinal mucosal barrier function by regulating the distribution of claudin-1 and claudin-3 in enterocytes, as well as enhancing protein abundance for amino acid transporters rBAT, xCT and LAT2 in enterocytes. Supplementation with CA may provide an effective nutritional strategy to improve intestinal integrity and amino acid transport and absorption in piglets.展开更多
Background: Milk protein is crucial for milk quality in sows and health of newborn piglets. Plasma amino acids(AA)in sows are important precursors for milk protein synthesis in the mammary gland. In order to study the...Background: Milk protein is crucial for milk quality in sows and health of newborn piglets. Plasma amino acids(AA)in sows are important precursors for milk protein synthesis in the mammary gland. In order to study the regulation of AA transported in sow mammary glands and possible underlying mechanisms, we measured the expression of genes coding for milk proteins, AA transporter expressions, and plasma AA concentrations in sows at three different physiological stages(D-17, D1 and D17 of lactation), and then further investigated the regulation of AA transport across the cell membrane by adaptive mechanisms using pig mammary epithelial cells(PMEC) as an in vitro model.PMEC were cultured in DMEM:F12 with 4 amino acid concentrations(0 × AA complex, 1 × AA complex, 5 × AA complex,and 25 × AA complex). Classes of AA complexes evaluated in this study included neutral AAs(L-Ala + L-Ser + L-Cys), acidic AAs(L-Asp, L-Glu) and neutral + basic AAs(L-Ala + L-Ser + L-Cys + L-Lys).Results: Our results indicated that m RNA expression of genes coding for milk protein(αs1-casein, αs2-casein,β-casein and κ-casein) increased significantly with the advance of physiological stage(P < 0.05), and plasma concentrations of most AAs including threonine, serine, glutamate, alanine, valine, cysteine, methionine, isoleucine and tyrosine were greater at D1 of lactation compared with D-17 and D17 of lactation(P < 0.05). Additionally, protein and gene expressions of AA transporters including excitatory AA transporter 3(EAAT3), alanine/serine/cysteine/threonine transporter(ASCT1) and sodium-coupled neutral AA transporter 1(SNAT2) were greater in lactating sow mammary glands compared with sow mammary glands in late pregnancy(P < 0.05). The m RNA expressions of SLC38 A2, SLC1 A1,SLC6 A14 increased significantly in the cell mediums supplemented with 5 × and 25 × of AA complexes compared with those cells cultured in DMEM/F12 cell medium(P < 0.05). The m RNA expressions of SLC38 A, SLC1 A4, and SLC6 A14 also increased in EBSS cell medium compared to DMEM/F12. However, only m RNA expression of SLC38 A decreased when AA complex was added into EBSS(P < 0.05).Conclusion: AA transportation was positively regulated in sow mammary glands with the advance of physiological stage from late pregnancy to peak of lactation and AA transporters in PMECs were adaptively regulated by changed AA concentrations.展开更多
The aim of this study was to investigate the effect of duodenal infusion of soybean small peptides(SSP) on mammary uptake of amino acids(AA).Eight Chinese Saanen goats with duodenal fistulae and catheters were used in...The aim of this study was to investigate the effect of duodenal infusion of soybean small peptides(SSP) on mammary uptake of amino acids(AA).Eight Chinese Saanen goats with duodenal fistulae and catheters were used in a crossover design trial.Goats were infused with 0,60,120,180 g/d SSP.The experimental period lasted for 14 d.The results showed:1) milk protein yield and content were increased,with the increment in milk protein yield being significant(P【0.05).Milk fat yield and content were decreased with the increased amount of SSP infused(P【0.05).2) Mammary plasma flow was not changed(P】0.05) by SSP infusion though the average was slightly higher.Mammary plasma flow/milk yield was decreased by SSP infusion and there was significant difference between the 120 g/d treatment and the control(P【0.05).3) Compared with the control treatment,uptakes of most free amino acids were increased in the 60 and 120 g/d treatments,but decreased by the 180 g/d treatment.The uptakes of all peptide-bound essential amino acids(PB-EAA) were increased except for PB-Ile.Uptake of PB-Val,PB-Leu, PB-Phe,PB-Thr,PB-Met and PB-Lys was highest in the 120 g/d treatment.Among the peptide-bound nonessential amino acids(PB-NEAA),uptake of PB-Ser,PB-Tyr,and PB-Pro was increased(P【0.05) while that of PB-Gly was decreased(P】0.05).4) With the exception of Lys,secretion of all essential AA(EAA) was increased by SSP infusion from 0-120 g/d(P【0.05),while in the 180 g/d treatment the increase was not significant and was lower than that in the 120 g/d treatment.5) The expression of APN was increased by SSP;in the 60,120,180 g/d treatments expression was 13.55-,18.69-,and 10.01-fold over that of the controls.Conclusion:SSP might be used as substrates for milk protein synthesis by mammary gland,and can increase synthesis and secretion of milk protein.There was reason to believe that uptake and use of AA was either saturated or inhibited at high levels of infusion of SSP.Increased APN expression with infusion of SSP related to mammary uptake of PBAA by mammary gland,which suggested that APN was one of the peptidases regulating use of AA from small peptides in mammary tissue.展开更多
The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain functio...The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.展开更多
Amino acids are the primary form of nitrogen utilization in higher plants,mainly transported by amino acid transporters.In this study,we analyzed the natural variation of amino acid transporter-like 4(OsATL4)in rice g...Amino acids are the primary form of nitrogen utilization in higher plants,mainly transported by amino acid transporters.In this study,we analyzed the natural variation of amino acid transporter-like 4(OsATL4)in rice germplasm resources,identified its spatiotemporal expression characteristics,determined its substrate transport,and validated its function using transgenic plants.We found that the promoter sequence of OsATL4 varied across 498 rice varieties.The expression level of OsATL4 was higher in japonica rice,which was negatively correlated with tiller number and grain yield.OsATL4 was highly expressed in the basal part,leaf sheath,stem,and young panicle,with its two splicing variants localized to the cell membrane.OsATL4a(the long splicing variant)had a high affinity for transporting Ser,Leu,Phe,and Thr,while OsATL4b(the short splicing variant)had a high affinity for transporting Ser,Leu,and Phe.Blocking OsATL4 promoted axillary bud outgrowth,rice tillering,and grain yield,whereas overexpression lines exhibited the opposite phenotype.Exogenous application of low concentrations of Ser promoted axillary bud outgrowth in overexpression lines,while high concentrations of Ser inhibited it.Conversely,the mutant lines showed the opposite response.Altered expression of OsATL4 might affect the expression of genes in nitrogen,auxin,and cytokinin pathways.We propose that two splicing variants of OsATL4 negatively regulate rice tillering and yield by mediating the transport of amino acids,making it a significant target for high-yield rice breeding.展开更多
Turbot(Scophthalmus maximus L.),a carnivorous fish species with high dietary protein requirement,was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which...Turbot(Scophthalmus maximus L.),a carnivorous fish species with high dietary protein requirement,was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach,pyloric caeca,rectum,and three equal parts of the remainder of the intestine.The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns.Peptide transporter 1(Pep T1) was rich in proximal intestine while peptide transporter 2(PepT2) was abundant in distal intestine.A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B^0-type amino acid transporter 1(B^0AT1),L-type amino acid transporter 2(LAT2),T-type amino acid transporter 1(TAT1),proton-coupled amino acid transporter 1(PAT1),y^+L-type amino acid transporter 1(y^+LAT1),and cationic amino acid transporter 2(CAT2) while ASC amino acid transporter 2(ASCT2),sodium-coupled neutral amino acid transporter 2(SNAT2),and y^+L-type amino acid transporter 2(y^+LAT2) abundantly expressed in stomach.In addition,system b^(0,+) transporters(rBAT and b^(0,+)AT) existed richly in distal intestine.These findings comprehensively characterized the distribution of solute carrier family proteins,which revealed the relative importance of peptide and amino acid absorption through luminal membrane.Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.展开更多
L-type amino acid transporters(LATs) mainly assist the uptake of neutral amino acids into cells. Four LATs(LAT1, LAT2, LAT3 and LAT4) have so far been identified. LAT1(SLC7A5) has been attracting much attention in the...L-type amino acid transporters(LATs) mainly assist the uptake of neutral amino acids into cells. Four LATs(LAT1, LAT2, LAT3 and LAT4) have so far been identified. LAT1(SLC7A5) has been attracting much attention in the field of cancer research since it is commonly up-regulated in various cancers. Basic research has made it increasingly clear that LAT1 plays a predominant role in malignancy. The functional significance of LAT1 in cancer and the potential therapeutic application of the features of LAT1 to cancer management are described in this review.展开更多
Amino acid transporters,which play a vital role in transporting amino acids for the biosynthesis of mammalian cells,are highly expressed in types of tumors.Increasing studies have shown the feasibility of amino acid t...Amino acid transporters,which play a vital role in transporting amino acids for the biosynthesis of mammalian cells,are highly expressed in types of tumors.Increasing studies have shown the feasibility of amino acid transporters as a component of tumortargeting therapy.In this review,we focus on tumor-related amino acid transporters and their potential use in tumor-targeting therapy.Firstly,the expression characteristics of amino acid transporters in cancer and their relationship with tumor growth are reviewed.Secondly,the recognition requirements are discussed,focusing on the“acidbase”properties,conformational isomerism and structural analogues.Finally,recent developments in amino acid transporter-targeting drug delivery strategies are highlighted,including prodrugs and nanocarriers,with special attention to the latest findings of molecular mechanisms and targeting efficiency of transporter-mediated endocytosis.We aim to offer related clues that might lead to valuable tumor-targeting strategies by the utilization of amino acid transporters.展开更多
480 healthy 1-day-old male yellow-feathered chickens were selected and assigned randomly into groups A and B,each having 6 pens with 40 birds per pen.The birds in group A were fed with wheatbased diet and group B with...480 healthy 1-day-old male yellow-feathered chickens were selected and assigned randomly into groups A and B,each having 6 pens with 40 birds per pen.The birds in group A were fed with wheatbased diet and group B with wheat-based diet supplemented with xylanase(1.2×l0~4 U/kg diet).On day 16,two birds per replication with average live weight were selected and sacrificed.Tissue samples of jejunum and ileum were collected to detect mRNA expression of cationic amino acid transporters using RT-PCR.The results showed that xylanase significantly increased the abundance of mRNA for rBAT and CAT4 in the intestines of broilers fed with wheat-based diets(P<0.05)and had a tendency to increase the mRNA expression of y^+LAT2 and CAT1 in jejunum(P>0.05),y^+LAT2,CAT1 and CAT4 in ileum(P>0.05).The treatment had no effect on the expression of rBAT mRNA in ileum(P>0.05).展开更多
Aim Prenatal stress (PS) can lead to abnormal behavior of offspring and increase the incidence of mental illness. Previous researches have shown that levels of glutamate and its receptor expression are closely relat...Aim Prenatal stress (PS) can lead to abnormal behavior of offspring and increase the incidence of mental illness. Previous researches have shown that levels of glutamate and its receptor expression are closely relat- ed to the occurrence of this phenomenon. Furthermore, recent study has demonstrated that the expression levels of excitatory amino acid transporters 2 (EAAT2) in different brain regions of 1 month PS offspring rats have changed. Methods The SD pregnant rats were used restraint stress to imitate PS from gestation 14 -~ 19 days. Offspring rats were weaned 21 days after birth. The expression of EAAT2 of hippocampus was observed by Western blot. Results The expression of EAAT2 of 1 month PS offspring rats was significantly decreased in comparison to control group. However, the expression of EAAT2 of 2 month PS offspring rats was significantly increased in comparison to 1 month PS offspring rats. Conclusion These phenomena have illustrated that the expression of EAAT2 of PS off- spring rats could show time dependence or reversibility. The expression of EAAT2 may play an important role in the development of mental illness of offspring rats influenced by PS.展开更多
Glutamate is the predominant excitatory neurotransmitter in the human brain and it has been shown that prolonged activation of the glutamatergic system leads to nerve damage and cell death. Following release from the ...Glutamate is the predominant excitatory neurotransmitter in the human brain and it has been shown that prolonged activation of the glutamatergic system leads to nerve damage and cell death. Following release from the pre-synaptic neuron and synaptic transmission, glutamate is either taken up into the presynaptic neuron or neighbouring glia by transmembrane glutamate transporters. Excitatory amino acid transporter(EAAT) 1 and EAAT2 are Na+-dependant glutamate transporters expressed predominantly in glia cells of the central nervous system. As the most abundant glutamate transporters, their primary role is to modulate levels of glutamatergic excitability and prevent spill over of glutamate beyond the synapse. This role is facilitated through the binding and transportation of glutamate into astrocytes and microglia. The function of EAAT1 and EAAT2 is heavily regulated at the levels of gene expression, post-transcriptional splicing, glycosylation states and cell-surface trafficking of the protein. Both glutamatergic dysfunction and glial dysfunction have been proposed to be involved in psychiatric disorder. This review will present an overview of the roles that EAAT1 and EAAT2 play in modulating glutamatergic activity in the human brain, and mount an argument that these two transporters could be involved in the aetiologies of schizophrenia and affective disorders as well as represent potential drug targets for novel therapies for those disorders.展开更多
Tumor cells have an increased demand for glucose and amino acids to support their rapid growth,and also exhibit alterations in biochemical pathways that metabolize these nutrients.Transport across the plasma membrane ...Tumor cells have an increased demand for glucose and amino acids to support their rapid growth,and also exhibit alterations in biochemical pathways that metabolize these nutrients.Transport across the plasma membrane is essential to feed glucose and amino acids into these tumor cell-selective metabolic pathways.Transfer of amino acids across biological membranes occurs via a multitude of transporters;tumor cells must upregulate one or more of these transporters to satisfy their increased demand for amino acids.Among the amino acid transporters,SLC6A14 stands out with specific functional features uniquely suited for the biological needs of the tumor cells.This transporter is indeed upregulated in tumors of epithelial origin,including colon cancer,cervical cancer,breast cancer,and pancreatic cancer.Since normal cells express this transporter only at low levels,blockade of this transporter should lead to amino acid starvation selectively in tumor cells,thus having little effect on normal cells.This offers a novel,yet logical,strategy for the treatment of cancers that are associated with upregulation of SLC6A14.In addition,a variety of amino acid-based prodrugs are recognized as substrates by SLC6A14,thus raising the possibility that anticancer drugs can be delivered into tumor cells selectively via this transporter in the form of amino acid prodrugs.This strategy allows exposure of SLC6A14-positive tumor cells to chemotherapy with minimal off-target effects.In conclusion,the amino acid transporter SLC6A14 holds great potential not only as a direct drug target for cancer therapy but also for tumor cell-selective delivery of anticancer drugs.展开更多
It is widely known that branched chain amino acids(BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA(isoleucine, le...It is widely known that branched chain amino acids(BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA(isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the m TOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including:(1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis.(2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters.(3)Supplementation of leucine in the diet enhances meat quality in finishing pigs.(4) BCAA are beneficial for mammary health, milk quality and embryo growth.(5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production.(6) BCAA participate in up-regulating innate and adaptive immune responses.In addition, abnormally elevated BCAA levels in the blood(decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.展开更多
Amino acids are essential plant compounds serving as the building blocks of proteins,the predominant forms of nitrogen(N)distribution,and signaling molecules.Plant amino acids derive from root acquisition,nitrate redu...Amino acids are essential plant compounds serving as the building blocks of proteins,the predominant forms of nitrogen(N)distribution,and signaling molecules.Plant amino acids derive from root acquisition,nitrate reduction,and ammonium assimilation.Many amino acid transporters(AATs)mediating transfer processes of amino acids have been functionally characterized in Arabidopsis,whereas the function and regulation of the vast majority of AATs in rice(Oryza sativa L.)and other crops remain unknown.In this review,we summarize the current understanding of amino acids in the rhizosphere and in metabolism.We describe their function as signal molecules and in regulating plant architecture,flowering time,and defense against abiotic stress and pathogen attack.AATs not only function in root acquisition and translocation of amino acids from source to sink organs,regulating N uptake and use efficiency,but also as transporters of non-amino acid substrates or as amino acid sensors.Several AAT genes show natural variations in their promoter and coding regions that are associated with altered uptake rate of amino acids,grain N content,and tiller number.Development of an amino acid transfer model in plants will advance the manipulation of AATs for improving rice architecture,grain yield and quality,and N-use efficiency.展开更多
BACKGROUND:The specificity in discriminating pancreatitis is limited in the positron emission tomography(PET)using Fluorine-18-fluorodeoxyglucose.Furthermore,PET is not widely available compared to the single photon e...BACKGROUND:The specificity in discriminating pancreatitis is limited in the positron emission tomography(PET)using Fluorine-18-fluorodeoxyglucose.Furthermore,PET is not widely available compared to the single photon emission computed tomography(SPECT).Since amino acids play a minor role in metabolism of inflammatory cells,the potential of the SPECT tracer,3-[ 123 I]iodo-L-α-methyltyrosine(123I-IMT),for detecting pancreatic cancer was examined in xenotransplantation models of human pancreatic carcinoma in mice. METHODS: 123 I-IMT was injected to eight mice inoculated with subcutaneous or orthotopic pancreatic tumors.Fused high-resolution-micro-SPECT(Hi-SPECT)and magnetic resonance imaging were performed.The gene expression level of L amino acid transport-system 1(LAT1)was analyzed and correlated with tumor uptake of 123 I-IMT. RESULTS:A high uptake of 123 I-IMT was detected in all tumor-bearing mice.The median tumor-to-background ratio (T/B)was 12.1(2.0-13.2)for orthotopic and 8.4(1.8-11.1)for subcutaneous xenotransplantation,respectively.Accordingly, the LAT1 expression in transplanted Colo357 cells was increased compared to non-malignant controls.CONCLUSIONS:Our mouse model could show a high 123 I-IMT uptake in pancreatic cancer.Fused MRI scans facilitate precise evaluation of uptake in the specific regions of interest.Further studies are required to confirm these findings in tumors derived from other human pancreatic cancer cells.Since amino acids play a minor role in the metabolism of inflammatory cells,the potential for application of 123 I-IMT to distinguish pancreatic tumor from inflammatory pancreatitis warrants further investigation.展开更多
The present study established a rat model of global cerebral ischemia induced by chest compression for six minutes to dynamically observe expressional changes of three glutamate transporters in the cerebral cortex and...The present study established a rat model of global cerebral ischemia induced by chest compression for six minutes to dynamically observe expressional changes of three glutamate transporters in the cerebral cortex and hippocampus. After 24 hours of ischemia, expression of glutamate transporter-1 significantly decreased in the cerebral cortex and hippocampus, which was accompanied by neuronal necrosis. At 7 days post-ischemia, expression of excitatory amino acid carrier 1 decreased in the hippocampal CA1 region and cortex, and was accompanied by apoptosis Expression of glutamate-aspartate transporter remained unchanged at 6 hours 7 days after ischemia. These results suggested that glutamate transporter levels were altered at different periods of cerebral ischemia.展开更多
In order to research the absorption and transportation differences ofglutamine containing small peptides and free glutamine in intestine of weaned piglets, 28-day-old weaned piglets were selected to get the sample for...In order to research the absorption and transportation differences ofglutamine containing small peptides and free glutamine in intestine of weaned piglets, 28-day-old weaned piglets were selected to get the sample for jejunum culture in vitro in this study. Trial 1 was conducted to study the stability of tripeptide (Arg-Gly-Gln) in the jejunum to determine the ideal culture time. It was designed into 2 treatments: control group (Kreb's solution, GC) and tripeptide group (by adding 556μmol/L of Arg-Gly-Gln to Kreb's solution, GP). They were cultured for 60 min. The absorption and transportation differences ofglutamine existing as Arg-Gly-Gln, Gly-Gln and free Gin were studied in trial 2. It was designed into 4 treatments: group 1 (G1, control group), Kreb's solution; Group 2 (G2), Kreb's solution+556 μmol/L Arg-Gly-Gln; group 3 (G3), Kreb's solution+556 μmol/L Gly-Gln and Arg; group 4 (G4), Kreb's solution+556 μmol/L arginine, glycine and glutamine. They were cultured for 40 minutes. The results indicated that the absorption and transportation of glutamine existing as Arg-Gly-Gln was more efficient than those of Gly-Gln while Gly-Gln was more efficient than free glutamine. Arg-Gly-Gln may be more excellent than Gly-Gln in physiological functions and nutrition potential.展开更多
High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 syst...High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 system. Mutation efficiency varied with genetic background in the T_0 generation, and GPC in the T_1 generation decreased significantly,owing mainly to a reduction in glutelin content. Amylose content was down-regulated significantly in some Osaap6 and all Osaap10 mutants. The increased taste value of these mutants was supported by Rapid Visco Analysis(RVA) profiles, which showed higher peak viscosity and breakdown viscosity and lower setback viscosity than the wild type. There were no significant deficiencies in agronomic traits of the mutants. Targeted mutagenesis of OsAAP6 and OsAAP10, especially OsAAP10, using the CRISPR/Cas9 system can rapidly reduce GPC and improve ECQ of rice, providing a new strategy for the breeding cultivars with desired ECQ.展开更多
Three functional substituted crown ethers were synthesized as liquid membrane transport carriers for amino acids. The result obtained shows that this kind of ditopic ligands can transport sodium salt of amino acids in...Three functional substituted crown ethers were synthesized as liquid membrane transport carriers for amino acids. The result obtained shows that this kind of ditopic ligands can transport sodium salt of amino acids in good rate value especially the one with two pyridinyl groups as binding site outside the macrocycle.展开更多
The effect of ethanol on the transport of amino acids across the human placenta was studied in the dual perfusion apparatus using a non-metabolizable α-amino isobutyric acid (AIB). Results were obtained for thirty in...The effect of ethanol on the transport of amino acids across the human placenta was studied in the dual perfusion apparatus using a non-metabolizable α-amino isobutyric acid (AIB). Results were obtained for thirty intact whole human placentas in the absence (control group) and presence (ethanol group) of ethanol (500 - 1000 mg/dL). Experimental determinations of AIB transport at AIB concentrations of 5 - 100 mg/l, measured radioactively using (1−14 C-) AIB, were compared with a dual-active transport model. The diffusion coefficients of AIB were found to be (3.7 × 10−9 cm2/s) in the absence of ethanol and (2.3 × 10−9 cm2/s) in the presence of ethanol with no statistical difference (P = 0.25). The ratio of the fetal to maternal perfusate concentrations in the absence of ethanol (1.44) was statistically significant (P = 0.016) from the ratio in the presence of ethanol (1.20), which may indicate that active transport in the human placenta is inhibited by the presence of ethanol. The placental uptake from the maternal circulation was 2.6 (control) and 2.5 (ethanol) times greater than the uptake from the total circulation. The relative contribution of the diffusive transport to the net placental uptake of AIB from both the maternal and fetal circulations was less than that of active transport regardless of the presence of ethanol: control (38%) and ethanol (35%). It appears that the placental tissue plays the role of a mediator to maintain a fetal concentration higher than the maternal one by either enhancing the transfer from the maternal to the placental tissue or impairing the transfer in the opposite direction.展开更多
基金supported the National Natural Science Foundation of China(31572410,31572412,31625025)the 111 Project(B16044)+2 种基金the Program for New Century Excellent Talents in University(NCET-12-0522)the Agriculture and Food Research Initiative Competitive Grant from the USDA National Institute of Food and Agriculture(No.2014-6701521770)Texas A&M Agri Life Research(H-8200)
文摘Background: Cinnamicaldehyde(CA) is a key flavor compound in cinnamon essential oil possessing various bioactivities. Tight junction(TJ) proteins are vital for the maintenance of intestinal epithelial barrier function,transport, absorption and utilization of dietary amino acids and other nutrients. In this study, we tested the hypothesis that CA may regulate the expression of TJ proteins and amino acid transporters in intestinal porcine epithelial cells(IPEC-1) isolated from neonatal pigs.Results: Compared with the control, cells incubated with 25 μmol/L CA had increased transepithelial electrical resistance(TEER) and decreased paracellular intestinal permeability. The beneficial effect of CA on mucosal barrier function was associated with enhanced protein abundance for claudin-4, zonula occludens(ZO)-1, ZO-2, and ZO-3. Immunofluorescence staining showed that 25 μmol/L CA promoted the localization of claudin-1 and claudin-3 to the plasma membrane without affecting the localization of other TJ proteins, including claudin-4, occludin,ZO-1, ZO-2, and ZO-3, compared with the control cells. Moreover, protein abundances for rBAT, xCT and LAT2 in IPEC-1 cells were enhanced by 25 μmol/L CA, while that for EAAT3 was not affected.Conclusions: CA improves intestinal mucosal barrier function by regulating the distribution of claudin-1 and claudin-3 in enterocytes, as well as enhancing protein abundance for amino acid transporters rBAT, xCT and LAT2 in enterocytes. Supplementation with CA may provide an effective nutritional strategy to improve intestinal integrity and amino acid transport and absorption in piglets.
基金financially supported by the National Natural Science Foundation of China(No.31402082)
文摘Background: Milk protein is crucial for milk quality in sows and health of newborn piglets. Plasma amino acids(AA)in sows are important precursors for milk protein synthesis in the mammary gland. In order to study the regulation of AA transported in sow mammary glands and possible underlying mechanisms, we measured the expression of genes coding for milk proteins, AA transporter expressions, and plasma AA concentrations in sows at three different physiological stages(D-17, D1 and D17 of lactation), and then further investigated the regulation of AA transport across the cell membrane by adaptive mechanisms using pig mammary epithelial cells(PMEC) as an in vitro model.PMEC were cultured in DMEM:F12 with 4 amino acid concentrations(0 × AA complex, 1 × AA complex, 5 × AA complex,and 25 × AA complex). Classes of AA complexes evaluated in this study included neutral AAs(L-Ala + L-Ser + L-Cys), acidic AAs(L-Asp, L-Glu) and neutral + basic AAs(L-Ala + L-Ser + L-Cys + L-Lys).Results: Our results indicated that m RNA expression of genes coding for milk protein(αs1-casein, αs2-casein,β-casein and κ-casein) increased significantly with the advance of physiological stage(P < 0.05), and plasma concentrations of most AAs including threonine, serine, glutamate, alanine, valine, cysteine, methionine, isoleucine and tyrosine were greater at D1 of lactation compared with D-17 and D17 of lactation(P < 0.05). Additionally, protein and gene expressions of AA transporters including excitatory AA transporter 3(EAAT3), alanine/serine/cysteine/threonine transporter(ASCT1) and sodium-coupled neutral AA transporter 1(SNAT2) were greater in lactating sow mammary glands compared with sow mammary glands in late pregnancy(P < 0.05). The m RNA expressions of SLC38 A2, SLC1 A1,SLC6 A14 increased significantly in the cell mediums supplemented with 5 × and 25 × of AA complexes compared with those cells cultured in DMEM/F12 cell medium(P < 0.05). The m RNA expressions of SLC38 A, SLC1 A4, and SLC6 A14 also increased in EBSS cell medium compared to DMEM/F12. However, only m RNA expression of SLC38 A decreased when AA complex was added into EBSS(P < 0.05).Conclusion: AA transportation was positively regulated in sow mammary glands with the advance of physiological stage from late pregnancy to peak of lactation and AA transporters in PMECs were adaptively regulated by changed AA concentrations.
文摘The aim of this study was to investigate the effect of duodenal infusion of soybean small peptides(SSP) on mammary uptake of amino acids(AA).Eight Chinese Saanen goats with duodenal fistulae and catheters were used in a crossover design trial.Goats were infused with 0,60,120,180 g/d SSP.The experimental period lasted for 14 d.The results showed:1) milk protein yield and content were increased,with the increment in milk protein yield being significant(P【0.05).Milk fat yield and content were decreased with the increased amount of SSP infused(P【0.05).2) Mammary plasma flow was not changed(P】0.05) by SSP infusion though the average was slightly higher.Mammary plasma flow/milk yield was decreased by SSP infusion and there was significant difference between the 120 g/d treatment and the control(P【0.05).3) Compared with the control treatment,uptakes of most free amino acids were increased in the 60 and 120 g/d treatments,but decreased by the 180 g/d treatment.The uptakes of all peptide-bound essential amino acids(PB-EAA) were increased except for PB-Ile.Uptake of PB-Val,PB-Leu, PB-Phe,PB-Thr,PB-Met and PB-Lys was highest in the 120 g/d treatment.Among the peptide-bound nonessential amino acids(PB-NEAA),uptake of PB-Ser,PB-Tyr,and PB-Pro was increased(P【0.05) while that of PB-Gly was decreased(P】0.05).4) With the exception of Lys,secretion of all essential AA(EAA) was increased by SSP infusion from 0-120 g/d(P【0.05),while in the 180 g/d treatment the increase was not significant and was lower than that in the 120 g/d treatment.5) The expression of APN was increased by SSP;in the 60,120,180 g/d treatments expression was 13.55-,18.69-,and 10.01-fold over that of the controls.Conclusion:SSP might be used as substrates for milk protein synthesis by mammary gland,and can increase synthesis and secretion of milk protein.There was reason to believe that uptake and use of AA was either saturated or inhibited at high levels of infusion of SSP.Increased APN expression with infusion of SSP related to mammary uptake of PBAA by mammary gland,which suggested that APN was one of the peptidases regulating use of AA from small peptides in mammary tissue.
基金supported by the National Natural Science Foundation of China,Nos.32371070 (to JT),31761163005 (to JT),32100824 (to QX)the Shenzhen Science and Technology Program,Nos.RCBS20210609104606024 (to QX),JCY20210324101813035 (to DL)+4 种基金the Guangdong Provincial Key S&T Program,No.2018B030336001 (to JT)the Key Basic Research Program of Shenzhen Science and Technology Innovation Commission,Nos.JCYJ20200109115405930 (to JT),JCYJ20220818101615033 (to DL),JCYJ20210324115811031 (to QX),JCYJ20200109150717745 (to QX)Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases,No.ZDSYS20220304163558001 (to JT)Guangdong Provincial Key Laboratory of Brain Connectome and Behavior,No.2023B1212060055 (to JT)the China Postdoctoral Science Foundation,No.2021M693298 (to QX)。
文摘The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.
基金supported by the National Natural Science Foundation of China (32060064/32260498)the Guizhou Provincial Excellent Young Talents Project of Science and Technology (Qiankehepingtairencai-YQK (2023)002)+6 种基金the Guizhou Provincial Science and Technology Projects (Qiankehejichu-ZK (2021)General 128Qiankehejichu-ZK (2022)Key 008Qiankehechengguo (2024)General 116Qiankehepingtairencai-BQW (2024)001,qiankehepingtai-YWZ (2024)004)the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province (Qiankehezhongyindi (2023)008)the Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education (Qianjiaoji (2023)007)the Qiandongnan Science and Technology Support Project (Qiandongnan Kehe Support (2023)06).
文摘Amino acids are the primary form of nitrogen utilization in higher plants,mainly transported by amino acid transporters.In this study,we analyzed the natural variation of amino acid transporter-like 4(OsATL4)in rice germplasm resources,identified its spatiotemporal expression characteristics,determined its substrate transport,and validated its function using transgenic plants.We found that the promoter sequence of OsATL4 varied across 498 rice varieties.The expression level of OsATL4 was higher in japonica rice,which was negatively correlated with tiller number and grain yield.OsATL4 was highly expressed in the basal part,leaf sheath,stem,and young panicle,with its two splicing variants localized to the cell membrane.OsATL4a(the long splicing variant)had a high affinity for transporting Ser,Leu,Phe,and Thr,while OsATL4b(the short splicing variant)had a high affinity for transporting Ser,Leu,and Phe.Blocking OsATL4 promoted axillary bud outgrowth,rice tillering,and grain yield,whereas overexpression lines exhibited the opposite phenotype.Exogenous application of low concentrations of Ser promoted axillary bud outgrowth in overexpression lines,while high concentrations of Ser inhibited it.Conversely,the mutant lines showed the opposite response.Altered expression of OsATL4 might affect the expression of genes in nitrogen,auxin,and cytokinin pathways.We propose that two splicing variants of OsATL4 negatively regulate rice tillering and yield by mediating the transport of amino acids,making it a significant target for high-yield rice breeding.
基金supported by the National Natural Science Foundation of China (No.31222055)973 Program (2014CB138602)
文摘Turbot(Scophthalmus maximus L.),a carnivorous fish species with high dietary protein requirement,was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach,pyloric caeca,rectum,and three equal parts of the remainder of the intestine.The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns.Peptide transporter 1(Pep T1) was rich in proximal intestine while peptide transporter 2(PepT2) was abundant in distal intestine.A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B^0-type amino acid transporter 1(B^0AT1),L-type amino acid transporter 2(LAT2),T-type amino acid transporter 1(TAT1),proton-coupled amino acid transporter 1(PAT1),y^+L-type amino acid transporter 1(y^+LAT1),and cationic amino acid transporter 2(CAT2) while ASC amino acid transporter 2(ASCT2),sodium-coupled neutral amino acid transporter 2(SNAT2),and y^+L-type amino acid transporter 2(y^+LAT2) abundantly expressed in stomach.In addition,system b^(0,+) transporters(rBAT and b^(0,+)AT) existed richly in distal intestine.These findings comprehensively characterized the distribution of solute carrier family proteins,which revealed the relative importance of peptide and amino acid absorption through luminal membrane.Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.
文摘L-type amino acid transporters(LATs) mainly assist the uptake of neutral amino acids into cells. Four LATs(LAT1, LAT2, LAT3 and LAT4) have so far been identified. LAT1(SLC7A5) has been attracting much attention in the field of cancer research since it is commonly up-regulated in various cancers. Basic research has made it increasingly clear that LAT1 plays a predominant role in malignancy. The functional significance of LAT1 in cancer and the potential therapeutic application of the features of LAT1 to cancer management are described in this review.
基金This work was supported by the National Natural Science Foundation of China(Nos.81803442 and 81703425).
文摘Amino acid transporters,which play a vital role in transporting amino acids for the biosynthesis of mammalian cells,are highly expressed in types of tumors.Increasing studies have shown the feasibility of amino acid transporters as a component of tumortargeting therapy.In this review,we focus on tumor-related amino acid transporters and their potential use in tumor-targeting therapy.Firstly,the expression characteristics of amino acid transporters in cancer and their relationship with tumor growth are reviewed.Secondly,the recognition requirements are discussed,focusing on the“acidbase”properties,conformational isomerism and structural analogues.Finally,recent developments in amino acid transporter-targeting drug delivery strategies are highlighted,including prodrugs and nanocarriers,with special attention to the latest findings of molecular mechanisms and targeting efficiency of transporter-mediated endocytosis.We aim to offer related clues that might lead to valuable tumor-targeting strategies by the utilization of amino acid transporters.
基金supported by National Key Basic Research Development Program 973 of China(No.2004CB117501)National Natural Science Foundation of China(No.30671519)Guangdong Province Scientific Technology Research Project(No.2005B20201016)
文摘480 healthy 1-day-old male yellow-feathered chickens were selected and assigned randomly into groups A and B,each having 6 pens with 40 birds per pen.The birds in group A were fed with wheatbased diet and group B with wheat-based diet supplemented with xylanase(1.2×l0~4 U/kg diet).On day 16,two birds per replication with average live weight were selected and sacrificed.Tissue samples of jejunum and ileum were collected to detect mRNA expression of cationic amino acid transporters using RT-PCR.The results showed that xylanase significantly increased the abundance of mRNA for rBAT and CAT4 in the intestines of broilers fed with wheat-based diets(P<0.05)and had a tendency to increase the mRNA expression of y^+LAT2 and CAT1 in jejunum(P>0.05),y^+LAT2,CAT1 and CAT4 in ileum(P>0.05).The treatment had no effect on the expression of rBAT mRNA in ileum(P>0.05).
文摘Aim Prenatal stress (PS) can lead to abnormal behavior of offspring and increase the incidence of mental illness. Previous researches have shown that levels of glutamate and its receptor expression are closely relat- ed to the occurrence of this phenomenon. Furthermore, recent study has demonstrated that the expression levels of excitatory amino acid transporters 2 (EAAT2) in different brain regions of 1 month PS offspring rats have changed. Methods The SD pregnant rats were used restraint stress to imitate PS from gestation 14 -~ 19 days. Offspring rats were weaned 21 days after birth. The expression of EAAT2 of hippocampus was observed by Western blot. Results The expression of EAAT2 of 1 month PS offspring rats was significantly decreased in comparison to control group. However, the expression of EAAT2 of 2 month PS offspring rats was significantly increased in comparison to 1 month PS offspring rats. Conclusion These phenomena have illustrated that the expression of EAAT2 of PS off- spring rats could show time dependence or reversibility. The expression of EAAT2 may play an important role in the development of mental illness of offspring rats influenced by PS.
文摘Glutamate is the predominant excitatory neurotransmitter in the human brain and it has been shown that prolonged activation of the glutamatergic system leads to nerve damage and cell death. Following release from the pre-synaptic neuron and synaptic transmission, glutamate is either taken up into the presynaptic neuron or neighbouring glia by transmembrane glutamate transporters. Excitatory amino acid transporter(EAAT) 1 and EAAT2 are Na+-dependant glutamate transporters expressed predominantly in glia cells of the central nervous system. As the most abundant glutamate transporters, their primary role is to modulate levels of glutamatergic excitability and prevent spill over of glutamate beyond the synapse. This role is facilitated through the binding and transportation of glutamate into astrocytes and microglia. The function of EAAT1 and EAAT2 is heavily regulated at the levels of gene expression, post-transcriptional splicing, glycosylation states and cell-surface trafficking of the protein. Both glutamatergic dysfunction and glial dysfunction have been proposed to be involved in psychiatric disorder. This review will present an overview of the roles that EAAT1 and EAAT2 play in modulating glutamatergic activity in the human brain, and mount an argument that these two transporters could be involved in the aetiologies of schizophrenia and affective disorders as well as represent potential drug targets for novel therapies for those disorders.
文摘Tumor cells have an increased demand for glucose and amino acids to support their rapid growth,and also exhibit alterations in biochemical pathways that metabolize these nutrients.Transport across the plasma membrane is essential to feed glucose and amino acids into these tumor cell-selective metabolic pathways.Transfer of amino acids across biological membranes occurs via a multitude of transporters;tumor cells must upregulate one or more of these transporters to satisfy their increased demand for amino acids.Among the amino acid transporters,SLC6A14 stands out with specific functional features uniquely suited for the biological needs of the tumor cells.This transporter is indeed upregulated in tumors of epithelial origin,including colon cancer,cervical cancer,breast cancer,and pancreatic cancer.Since normal cells express this transporter only at low levels,blockade of this transporter should lead to amino acid starvation selectively in tumor cells,thus having little effect on normal cells.This offers a novel,yet logical,strategy for the treatment of cancers that are associated with upregulation of SLC6A14.In addition,a variety of amino acid-based prodrugs are recognized as substrates by SLC6A14,thus raising the possibility that anticancer drugs can be delivered into tumor cells selectively via this transporter in the form of amino acid prodrugs.This strategy allows exposure of SLC6A14-positive tumor cells to chemotherapy with minimal off-target effects.In conclusion,the amino acid transporter SLC6A14 holds great potential not only as a direct drug target for cancer therapy but also for tumor cell-selective delivery of anticancer drugs.
基金supported by the National Key Basic Research Program(S.Y.Q.,Grant Number 2012CB124704)
文摘It is widely known that branched chain amino acids(BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA(isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the m TOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including:(1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis.(2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters.(3)Supplementation of leucine in the diet enhances meat quality in finishing pigs.(4) BCAA are beneficial for mammary health, milk quality and embryo growth.(5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production.(6) BCAA participate in up-regulating innate and adaptive immune responses.In addition, abnormally elevated BCAA levels in the blood(decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.
基金supported by the National Natural Science Foundation of China(31930101)National Key Research and Development Program of China(2016YFD0100700)+1 种基金Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and the Innovative Research Team Development Plan of the Ministry of Education of China(IRT17R56 and KYT201802)the Priority Academic Program Development from Jiangsu Government。
文摘Amino acids are essential plant compounds serving as the building blocks of proteins,the predominant forms of nitrogen(N)distribution,and signaling molecules.Plant amino acids derive from root acquisition,nitrate reduction,and ammonium assimilation.Many amino acid transporters(AATs)mediating transfer processes of amino acids have been functionally characterized in Arabidopsis,whereas the function and regulation of the vast majority of AATs in rice(Oryza sativa L.)and other crops remain unknown.In this review,we summarize the current understanding of amino acids in the rhizosphere and in metabolism.We describe their function as signal molecules and in regulating plant architecture,flowering time,and defense against abiotic stress and pathogen attack.AATs not only function in root acquisition and translocation of amino acids from source to sink organs,regulating N uptake and use efficiency,but also as transporters of non-amino acid substrates or as amino acid sensors.Several AAT genes show natural variations in their promoter and coding regions that are associated with altered uptake rate of amino acids,grain N content,and tiller number.Development of an amino acid transfer model in plants will advance the manipulation of AATs for improving rice architecture,grain yield and quality,and N-use efficiency.
基金supported in part by a BMBF grant(TOMCAT)given to H.K.the Molecular Imaging North Competence Center(MOIN-CC)
文摘BACKGROUND:The specificity in discriminating pancreatitis is limited in the positron emission tomography(PET)using Fluorine-18-fluorodeoxyglucose.Furthermore,PET is not widely available compared to the single photon emission computed tomography(SPECT).Since amino acids play a minor role in metabolism of inflammatory cells,the potential of the SPECT tracer,3-[ 123 I]iodo-L-α-methyltyrosine(123I-IMT),for detecting pancreatic cancer was examined in xenotransplantation models of human pancreatic carcinoma in mice. METHODS: 123 I-IMT was injected to eight mice inoculated with subcutaneous or orthotopic pancreatic tumors.Fused high-resolution-micro-SPECT(Hi-SPECT)and magnetic resonance imaging were performed.The gene expression level of L amino acid transport-system 1(LAT1)was analyzed and correlated with tumor uptake of 123 I-IMT. RESULTS:A high uptake of 123 I-IMT was detected in all tumor-bearing mice.The median tumor-to-background ratio (T/B)was 12.1(2.0-13.2)for orthotopic and 8.4(1.8-11.1)for subcutaneous xenotransplantation,respectively.Accordingly, the LAT1 expression in transplanted Colo357 cells was increased compared to non-malignant controls.CONCLUSIONS:Our mouse model could show a high 123 I-IMT uptake in pancreatic cancer.Fused MRI scans facilitate precise evaluation of uptake in the specific regions of interest.Further studies are required to confirm these findings in tumors derived from other human pancreatic cancer cells.Since amino acids play a minor role in the metabolism of inflammatory cells,the potential for application of 123 I-IMT to distinguish pancreatic tumor from inflammatory pancreatitis warrants further investigation.
基金supported by the National Natural Science Foundation of China, No. 81171168Shanghai Science and Technology Committee, No. 10140903200
文摘The present study established a rat model of global cerebral ischemia induced by chest compression for six minutes to dynamically observe expressional changes of three glutamate transporters in the cerebral cortex and hippocampus. After 24 hours of ischemia, expression of glutamate transporter-1 significantly decreased in the cerebral cortex and hippocampus, which was accompanied by neuronal necrosis. At 7 days post-ischemia, expression of excitatory amino acid carrier 1 decreased in the hippocampal CA1 region and cortex, and was accompanied by apoptosis Expression of glutamate-aspartate transporter remained unchanged at 6 hours 7 days after ischemia. These results suggested that glutamate transporter levels were altered at different periods of cerebral ischemia.
文摘In order to research the absorption and transportation differences ofglutamine containing small peptides and free glutamine in intestine of weaned piglets, 28-day-old weaned piglets were selected to get the sample for jejunum culture in vitro in this study. Trial 1 was conducted to study the stability of tripeptide (Arg-Gly-Gln) in the jejunum to determine the ideal culture time. It was designed into 2 treatments: control group (Kreb's solution, GC) and tripeptide group (by adding 556μmol/L of Arg-Gly-Gln to Kreb's solution, GP). They were cultured for 60 min. The absorption and transportation differences ofglutamine existing as Arg-Gly-Gln, Gly-Gln and free Gin were studied in trial 2. It was designed into 4 treatments: group 1 (G1, control group), Kreb's solution; Group 2 (G2), Kreb's solution+556 μmol/L Arg-Gly-Gln; group 3 (G3), Kreb's solution+556 μmol/L Gly-Gln and Arg; group 4 (G4), Kreb's solution+556 μmol/L arginine, glycine and glutamine. They were cultured for 40 minutes. The results indicated that the absorption and transportation of glutamine existing as Arg-Gly-Gln was more efficient than those of Gly-Gln while Gly-Gln was more efficient than free glutamine. Arg-Gly-Gln may be more excellent than Gly-Gln in physiological functions and nutrition potential.
基金financially supported by National Key Research and Development Program of China(2016YFD0100501)the National Natural Science Foundation of China(31871241,31371233)+3 种基金the Natural Science Foundation of Jiangsu Province(BE2017345,PZCZ201702,BE2018351)the Research and Innovation Program of Postgraduate in Jiangsu Province(KYCX17_1886)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Yangzhou University International Academic Exchange Fund。
文摘High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 system. Mutation efficiency varied with genetic background in the T_0 generation, and GPC in the T_1 generation decreased significantly,owing mainly to a reduction in glutelin content. Amylose content was down-regulated significantly in some Osaap6 and all Osaap10 mutants. The increased taste value of these mutants was supported by Rapid Visco Analysis(RVA) profiles, which showed higher peak viscosity and breakdown viscosity and lower setback viscosity than the wild type. There were no significant deficiencies in agronomic traits of the mutants. Targeted mutagenesis of OsAAP6 and OsAAP10, especially OsAAP10, using the CRISPR/Cas9 system can rapidly reduce GPC and improve ECQ of rice, providing a new strategy for the breeding cultivars with desired ECQ.
基金We are grateful to the National Natural Science Foundation of China(29872034)the Natural Science Foundation of Henan Province for the financial support.
文摘Three functional substituted crown ethers were synthesized as liquid membrane transport carriers for amino acids. The result obtained shows that this kind of ditopic ligands can transport sodium salt of amino acids in good rate value especially the one with two pyridinyl groups as binding site outside the macrocycle.
文摘The effect of ethanol on the transport of amino acids across the human placenta was studied in the dual perfusion apparatus using a non-metabolizable α-amino isobutyric acid (AIB). Results were obtained for thirty intact whole human placentas in the absence (control group) and presence (ethanol group) of ethanol (500 - 1000 mg/dL). Experimental determinations of AIB transport at AIB concentrations of 5 - 100 mg/l, measured radioactively using (1−14 C-) AIB, were compared with a dual-active transport model. The diffusion coefficients of AIB were found to be (3.7 × 10−9 cm2/s) in the absence of ethanol and (2.3 × 10−9 cm2/s) in the presence of ethanol with no statistical difference (P = 0.25). The ratio of the fetal to maternal perfusate concentrations in the absence of ethanol (1.44) was statistically significant (P = 0.016) from the ratio in the presence of ethanol (1.20), which may indicate that active transport in the human placenta is inhibited by the presence of ethanol. The placental uptake from the maternal circulation was 2.6 (control) and 2.5 (ethanol) times greater than the uptake from the total circulation. The relative contribution of the diffusive transport to the net placental uptake of AIB from both the maternal and fetal circulations was less than that of active transport regardless of the presence of ethanol: control (38%) and ethanol (35%). It appears that the placental tissue plays the role of a mediator to maintain a fetal concentration higher than the maternal one by either enhancing the transfer from the maternal to the placental tissue or impairing the transfer in the opposite direction.