This study aimed to present a novel clay/biochar composite adsorption particle, which made from abandoned reed straw and clay to remove ammonia nitrogen(NH4^+-N) from micro-contaminated water. The removal performance ...This study aimed to present a novel clay/biochar composite adsorption particle, which made from abandoned reed straw and clay to remove ammonia nitrogen(NH4^+-N) from micro-contaminated water. The removal performance of NH4^+-N by composite adsorption particle was monitored under different raw material proportions and initial NH4^+-N concentration. Besides, adsorption kinetics and adsorption isotherms were investigated to reveal the adsorption mechanisms. The results showed that NH4^+-N was effectively removed under optimal proportion of biochar, foaming agent and crosslinker with 20%, 3%, and 3%, respectively. The optimal contact time was 150 min and the best removal efficiency was 88.6% at initial NH4^+-N concentration of 20 mg L^-1. The adsorption performance was well described by the second order kinetic model and Freundlich model. The novel clay/biochar composite adsorption particle in this study demonstrated a high potential for NH4^+-N removal from surface water.展开更多
Ammonia nitrogen (NH_(4)^(+)-N) is a ubiquitous environmental pollutant,especially in offshore aquaculture systems.Electrochemical oxidation is very promising to remove NH_(4)^(+)-N,but suffers from the use of preciou...Ammonia nitrogen (NH_(4)^(+)-N) is a ubiquitous environmental pollutant,especially in offshore aquaculture systems.Electrochemical oxidation is very promising to remove NH_(4)^(+)-N,but suffers from the use of precious metals anodes.In this work,a robust and cheap electrocatalyst,iron single-atoms distributed in nitrogen-doped carbon (Fe-SAs/N-C),was developed for electrochemical removal of NH_(4)^(+)-N from in wastewater containing chloride.The FeSAs/N-C catalyst exhibited superior activity than that of iron nanoparticles loaded carbon(Fe-NPs/N-C),unmodified carbon and conventional Ti/IrO_(2)-TiO_(2)-RuO_(2)electrodes.And high removal efficiency (>99%) could be achieved as well as high N_(2)selectivity (99.5%) at low current density.Further experiments and density functional theory (DFT) calculations demonstrated the indispensable role of single-atom iron in the promoted generation of chloride derived species for efficient removal of NH_(4)^(+)-N.This study provides promising inexpensive catalysts for NH_(4)^(+)-N removal in aquaculture wastewater.展开更多
Conventional water purified processes have low removal efficiencies for low concentrations of ammonia nitrogen, nitrite nitrogen and micro-pollutants. The efficiency and mechanisms of a novel immobilized biological ac...Conventional water purified processes have low removal efficiencies for low concentrations of ammonia nitrogen, nitrite nitrogen and micro-pollutants. The efficiency and mechanisms of a novel immobilized biological activated carbon (IBAC) process to remove those pollutants from treated potable water was investigated. Operated at a hydraulic retention time of 24 minutes, the IBAC process achieved ammonia nitrogen, nitrite nitrogen and organic micro-pollutants (measured as COD equivalent) removal efficiencies of 95%, 96% and 37%, respectively. A GC/MS analysis of the organic micro-pollutants revealed that the initial 24 organic compounds in the in-coming water were reduced to 7 after the IBAC treatment. The organic micro-pollutant removal efficiency decreased with decreasing in-coming concentrations. Pollutant reduction in the IBAC process was achieved by a rapid physical adsorption on the activated carbon, which effectively retained the pollutants in the system despite the short hydraulic retention time, followed by a slower biological enzymatic degradation of the pollutants.展开更多
基金supported by the National Major Project of Water Pollution Control and Management Technology in China (No.2013ZX07202-007)the Shenzhen Science and Technology Project (No.GRCK2017042116092660)the National Natural Science Foundation of China (No.51308066)。
文摘This study aimed to present a novel clay/biochar composite adsorption particle, which made from abandoned reed straw and clay to remove ammonia nitrogen(NH4^+-N) from micro-contaminated water. The removal performance of NH4^+-N by composite adsorption particle was monitored under different raw material proportions and initial NH4^+-N concentration. Besides, adsorption kinetics and adsorption isotherms were investigated to reveal the adsorption mechanisms. The results showed that NH4^+-N was effectively removed under optimal proportion of biochar, foaming agent and crosslinker with 20%, 3%, and 3%, respectively. The optimal contact time was 150 min and the best removal efficiency was 88.6% at initial NH4^+-N concentration of 20 mg L^-1. The adsorption performance was well described by the second order kinetic model and Freundlich model. The novel clay/biochar composite adsorption particle in this study demonstrated a high potential for NH4^+-N removal from surface water.
基金supported by the Natural Science Foundation of Hubei Province of China(No. 2020CFB382)the National Natural Science Foundation of China(No. 22176068)the Research and Innovation Initiatives of WHPU(No. 2022J03)。
文摘Ammonia nitrogen (NH_(4)^(+)-N) is a ubiquitous environmental pollutant,especially in offshore aquaculture systems.Electrochemical oxidation is very promising to remove NH_(4)^(+)-N,but suffers from the use of precious metals anodes.In this work,a robust and cheap electrocatalyst,iron single-atoms distributed in nitrogen-doped carbon (Fe-SAs/N-C),was developed for electrochemical removal of NH_(4)^(+)-N from in wastewater containing chloride.The FeSAs/N-C catalyst exhibited superior activity than that of iron nanoparticles loaded carbon(Fe-NPs/N-C),unmodified carbon and conventional Ti/IrO_(2)-TiO_(2)-RuO_(2)electrodes.And high removal efficiency (>99%) could be achieved as well as high N_(2)selectivity (99.5%) at low current density.Further experiments and density functional theory (DFT) calculations demonstrated the indispensable role of single-atom iron in the promoted generation of chloride derived species for efficient removal of NH_(4)^(+)-N.This study provides promising inexpensive catalysts for NH_(4)^(+)-N removal in aquaculture wastewater.
文摘Conventional water purified processes have low removal efficiencies for low concentrations of ammonia nitrogen, nitrite nitrogen and micro-pollutants. The efficiency and mechanisms of a novel immobilized biological activated carbon (IBAC) process to remove those pollutants from treated potable water was investigated. Operated at a hydraulic retention time of 24 minutes, the IBAC process achieved ammonia nitrogen, nitrite nitrogen and organic micro-pollutants (measured as COD equivalent) removal efficiencies of 95%, 96% and 37%, respectively. A GC/MS analysis of the organic micro-pollutants revealed that the initial 24 organic compounds in the in-coming water were reduced to 7 after the IBAC treatment. The organic micro-pollutant removal efficiency decreased with decreasing in-coming concentrations. Pollutant reduction in the IBAC process was achieved by a rapid physical adsorption on the activated carbon, which effectively retained the pollutants in the system despite the short hydraulic retention time, followed by a slower biological enzymatic degradation of the pollutants.