In this work, pyrolysis photoionization time-of-flight mass spectrometry (Py-PI-TOFMS) was applied to study the behavior of ammonia poisoning on H-form ultra stable Y (HUSY) zeolite for the catalytic pyrolysis of ...In this work, pyrolysis photoionization time-of-flight mass spectrometry (Py-PI-TOFMS) was applied to study the behavior of ammonia poisoning on H-form ultra stable Y (HUSY) zeolite for the catalytic pyrolysis of polypropylene (PP). Firstly, ammonia poisoning on HUSY was performed to obtain the suitable catalysts with different strength and amounts of acid sites. Secondly, online photoionization mass spectra for the pyrolysis products of PP and HUSY with various acid strength were recorded at different pyrolysis temperatures. Finally, the formation curves of various pyrolysates of PP/HUSY with the increase of temperature were determined. Our results indicate that the formation temperatures, yields and selectivity of the pyrolysis products of PP demonstrate obvious relationship with the acid strength of HUSY.展开更多
文摘In this work, pyrolysis photoionization time-of-flight mass spectrometry (Py-PI-TOFMS) was applied to study the behavior of ammonia poisoning on H-form ultra stable Y (HUSY) zeolite for the catalytic pyrolysis of polypropylene (PP). Firstly, ammonia poisoning on HUSY was performed to obtain the suitable catalysts with different strength and amounts of acid sites. Secondly, online photoionization mass spectra for the pyrolysis products of PP and HUSY with various acid strength were recorded at different pyrolysis temperatures. Finally, the formation curves of various pyrolysates of PP/HUSY with the increase of temperature were determined. Our results indicate that the formation temperatures, yields and selectivity of the pyrolysis products of PP demonstrate obvious relationship with the acid strength of HUSY.