Solid-state NMR(ssNMR)spectroscopy is a powerful technique for characterizing the surface sites of solid acids and organic intermediates formed during the acid catalyzed reaction.As a very useful probe molecule,ammoni...Solid-state NMR(ssNMR)spectroscopy is a powerful technique for characterizing the surface sites of solid acids and organic intermediates formed during the acid catalyzed reaction.As a very useful probe molecule,ammonia is often utilized to determine the density of solidacids’surface sites by ssNMR spectroscopy.The present mini-review summarizes some of the latest research developments on the quantitative characterization of the acid sites and carbenium ions during the zeolite catalytic reaction by ammonia probe-assisted ssNMR spectroscopy.展开更多
Infinite coordination polymers are recognized as excellent platform for functionalization.Dithienylethene motifs,which are one of the most attractive functional moieties,were incorporated into an infinite coordination...Infinite coordination polymers are recognized as excellent platform for functionalization.Dithienylethene motifs,which are one of the most attractive functional moieties,were incorporated into an infinite coordination polymer,to deliver a‘‘smart’’porous material that can response to external stimuli.The obtained dithienylethene-based infinite coordination polymers(named Cu-DTEDBA)share the advantages of both infinite coordination polymers(porosity and stability)and dithienylethene motifs(photochromism).The physical and chemical properties of Cu-DTEDBA were characterized by FTIR,TEM,SEM,XRD,TGA,UV–vis,EDX and BET.Moreover,the combination of dithienylethene and infinite coordination polymers gives rise to a synergistic effect,which induces functional behaviors of ammonia sensor applications.Both open and closed forms of Cu-DTEDBA exhibit distinct colorimetric change upon exposure to gaseous ammonia,which is not observed in dithienylethene free molecules.展开更多
基金the National Natural Science Foundation of China(21972069)the Fundamental Research Funds for the Central Universities(Nankai University).
文摘Solid-state NMR(ssNMR)spectroscopy is a powerful technique for characterizing the surface sites of solid acids and organic intermediates formed during the acid catalyzed reaction.As a very useful probe molecule,ammonia is often utilized to determine the density of solidacids’surface sites by ssNMR spectroscopy.The present mini-review summarizes some of the latest research developments on the quantitative characterization of the acid sites and carbenium ions during the zeolite catalytic reaction by ammonia probe-assisted ssNMR spectroscopy.
基金supported by National Basic Research Program of China (No. 2013CB733501)National Natural Science Foundation of China (Nos. 91334203, 21376074, 21402050)Fundamental Research Funds for the Central Universities of China (No. WK1314008)
文摘Infinite coordination polymers are recognized as excellent platform for functionalization.Dithienylethene motifs,which are one of the most attractive functional moieties,were incorporated into an infinite coordination polymer,to deliver a‘‘smart’’porous material that can response to external stimuli.The obtained dithienylethene-based infinite coordination polymers(named Cu-DTEDBA)share the advantages of both infinite coordination polymers(porosity and stability)and dithienylethene motifs(photochromism).The physical and chemical properties of Cu-DTEDBA were characterized by FTIR,TEM,SEM,XRD,TGA,UV–vis,EDX and BET.Moreover,the combination of dithienylethene and infinite coordination polymers gives rise to a synergistic effect,which induces functional behaviors of ammonia sensor applications.Both open and closed forms of Cu-DTEDBA exhibit distinct colorimetric change upon exposure to gaseous ammonia,which is not observed in dithienylethene free molecules.