The high number of leak events that took place in recent years at a 25.4 cm (10”)Øpipeline transporting anhydrous liquid ammonia, located in the Southeast of Mexico, was the main reason to carry out a numb...The high number of leak events that took place in recent years at a 25.4 cm (10”)Øpipeline transporting anhydrous liquid ammonia, located in the Southeast of Mexico, was the main reason to carry out a number of field studies and laboratory tests that helped establish not only the failure causes but also mitigation and control solutions. The performed activities included direct evaluation at failure sites, total repair programs, metallographic studies and pipeline flexibility analyses. The obtained results were useful to conclude that the failures obeyed a cracking mechanism by Stress Corrosion Cracking (SCC) which was caused by the combined effect of different factors: high stress resistance, high hardness of the base metal with a microstructure prone to brittleness and residual strains originated during the pipeline construction. From the operative, logistic and financial standpoints, it is not feasible to release the stress of approximately 22 km of pipeline. Therefore, the only viable solution is to install a new pipeline with suitable fabrication, construction and installation specifications aimed at preventing the SCC phenomenon.展开更多
Previously we have determined the dilute mixture transport properties of slightly polar fluorocarbons using the inverted intermolecular potential energies(Ind. Eng. Chem. Res. 45(2006) 9211–9223). In the present pape...Previously we have determined the dilute mixture transport properties of slightly polar fluorocarbons using the inverted intermolecular potential energies(Ind. Eng. Chem. Res. 45(2006) 9211–9223). In the present paper, the corresponding states correlations for reduced viscosity collision integrals were employed to obtain effective unlike interaction potential models for dilute binary mixtures of highly polar molecule ammonia with noble gases.The inverted potentials were fitted to the Morse–Spline–van der Waals(MSV), model potential. The method of least-squares fitting was then applied to identify best consistence force parameters for each ammonia-noble gas mixture, taking advantage of experimental viscosities, diffusion coefficients and thermal conductivities.The proposed potential models were compared with those obtained from other sources, in order to assess the extent of their validity.The potentials were later employed to calculate transport properties of the studied mixtures. Then, results were compared with those reported in the literature, which led to the acceptable agreement.展开更多
Ammonium uptake in plant roots is mediated by AMT/MEP/Rh-type ammonium transporters. Out of five AMTs being expressed in Arabidopsis roots, four AMT1-type transporters contribute to ammonium uptake, whereas no physiol...Ammonium uptake in plant roots is mediated by AMT/MEP/Rh-type ammonium transporters. Out of five AMTs being expressed in Arabidopsis roots, four AMT1-type transporters contribute to ammonium uptake, whereas no physiological function has so far been assigned to the only homolog belonging to the MEP subfamily, AMT2;1. Based on the observation that under ammonium supply, the transcript levels of AMT2;1 increased and its promoter activity shifted preferentially to the pericycle, we assessed the contribution of AMT2;1 to xylem loading. When exposed to ^15N-labeled ammonium, amt2;1 mutant lines translocated less tracer to the shoots and contained less ammonium in the xylem sap. Moreover, in an amtl;1 amtl;2 amtl ;3 amt2;1 quadruple mutant (qko), co-expression of AMT2;1 with either AMT1;2 or AMT1;3 significantly enhanced ^15N translocation to shoots, indicating a cooperative action between AMT2;1 and AMT1 transporters. Under N deficiency, proAMT2;1-GFP lines showed enhanced promoter activity predominantly in cortical root cells, which coincided with elevated ammonium influx conferred by AMT2;1 at millimolar sub- strate concentrations. Our results indicate that in addition to contributing moderately to root uptake in the low-affinity range, AMT2;1 functions mainly in root-to-shoot translocation of ammonium, depending on its Cell-type-specific expression in response to the plant nutritional status and to local ammonium gradients.展开更多
文摘The high number of leak events that took place in recent years at a 25.4 cm (10”)Øpipeline transporting anhydrous liquid ammonia, located in the Southeast of Mexico, was the main reason to carry out a number of field studies and laboratory tests that helped establish not only the failure causes but also mitigation and control solutions. The performed activities included direct evaluation at failure sites, total repair programs, metallographic studies and pipeline flexibility analyses. The obtained results were useful to conclude that the failures obeyed a cracking mechanism by Stress Corrosion Cracking (SCC) which was caused by the combined effect of different factors: high stress resistance, high hardness of the base metal with a microstructure prone to brittleness and residual strains originated during the pipeline construction. From the operative, logistic and financial standpoints, it is not feasible to release the stress of approximately 22 km of pipeline. Therefore, the only viable solution is to install a new pipeline with suitable fabrication, construction and installation specifications aimed at preventing the SCC phenomenon.
文摘Previously we have determined the dilute mixture transport properties of slightly polar fluorocarbons using the inverted intermolecular potential energies(Ind. Eng. Chem. Res. 45(2006) 9211–9223). In the present paper, the corresponding states correlations for reduced viscosity collision integrals were employed to obtain effective unlike interaction potential models for dilute binary mixtures of highly polar molecule ammonia with noble gases.The inverted potentials were fitted to the Morse–Spline–van der Waals(MSV), model potential. The method of least-squares fitting was then applied to identify best consistence force parameters for each ammonia-noble gas mixture, taking advantage of experimental viscosities, diffusion coefficients and thermal conductivities.The proposed potential models were compared with those obtained from other sources, in order to assess the extent of their validity.The potentials were later employed to calculate transport properties of the studied mixtures. Then, results were compared with those reported in the literature, which led to the acceptable agreement.
文摘Ammonium uptake in plant roots is mediated by AMT/MEP/Rh-type ammonium transporters. Out of five AMTs being expressed in Arabidopsis roots, four AMT1-type transporters contribute to ammonium uptake, whereas no physiological function has so far been assigned to the only homolog belonging to the MEP subfamily, AMT2;1. Based on the observation that under ammonium supply, the transcript levels of AMT2;1 increased and its promoter activity shifted preferentially to the pericycle, we assessed the contribution of AMT2;1 to xylem loading. When exposed to ^15N-labeled ammonium, amt2;1 mutant lines translocated less tracer to the shoots and contained less ammonium in the xylem sap. Moreover, in an amtl;1 amtl;2 amtl ;3 amt2;1 quadruple mutant (qko), co-expression of AMT2;1 with either AMT1;2 or AMT1;3 significantly enhanced ^15N translocation to shoots, indicating a cooperative action between AMT2;1 and AMT1 transporters. Under N deficiency, proAMT2;1-GFP lines showed enhanced promoter activity predominantly in cortical root cells, which coincided with elevated ammonium influx conferred by AMT2;1 at millimolar sub- strate concentrations. Our results indicate that in addition to contributing moderately to root uptake in the low-affinity range, AMT2;1 functions mainly in root-to-shoot translocation of ammonium, depending on its Cell-type-specific expression in response to the plant nutritional status and to local ammonium gradients.