期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Influence of osmotic distillation on membrane absorption for the treatment of high strength ammonia wastewater 被引量:1
1
作者 WANGGuan-ping SHIHan-chang SHENZhi-song 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第4期651-655,共5页
Osmotic distillation(OD) was found to be a coupled process in membrane absorption(MA) for the treatment of high strength ammonia wastewater. As a result, ammonia could not be concentrated in absorption solution(AS) as... Osmotic distillation(OD) was found to be a coupled process in membrane absorption(MA) for the treatment of high strength ammonia wastewater. As a result, ammonia could not be concentrated in absorption solution(AS) as expected. The inhibition of the coupled OD in MA process was investigated as well as various factors affecting the inhibition. The results indicated that the coupled OD can be effectively inhibited by heating concentrated solution and cooling dilute solution. It was also found that experimental minimum inhibition temperature difference(MITD) between concentrated and dilute solutions was different when using polyvinylidene fluoride(PVDF) and polypropylene(PP) membranes respectively, which could be ascribed to material properties, such as OD and membrane distillation(MD) coefficients of the membranes. Experimental MITDs were found to be higher than theoretical MITDs which were calculated using a simplified method. 展开更多
关键词 membrane absorption osmotic distillation high strength ammonia wastewater
下载PDF
内循环撞击流生物膜反应器处理高氨氮废水试验研究(英文) 被引量:10
2
作者 李国朝 杨涛 +1 位作者 陈捷 张新华 《Meteorological and Environmental Research》 CAS 2010年第12期104-106,共3页
[Objective] The treatment effect of inner circulation impinging stream biofilm reactor(ICISBR) on high strength ammonia wastewater was studied.[Method] By means of ICISBR,high strength ammonia wastewater was treated b... [Objective] The treatment effect of inner circulation impinging stream biofilm reactor(ICISBR) on high strength ammonia wastewater was studied.[Method] By means of ICISBR,high strength ammonia wastewater was treated by using corncob as biological carrier,and the effect of C/N and dissolved oxygen(DO) on the removal effect of chemical oxygen demand(COD) and ammonia nitrogen(NH+4-N) were discussed in our paper.[Result] When NH+4-N and DO in effluent water were 200 and 2 mg/L,respectively,the removal effect of COD was not affected obviously whether C/N was 1.0 or 1.5,reaching above 92%;when C/N was 1.5,the average removal rate of COD and NH+4-N were the highest,namely 92.7% and 41.2%,respectively;when C/N was 2.0,the average removal rate of COD and NH+4-N decreased obviously to 20% and 10%;when C/N and NH+4-N were 1.5 and 200 mg/L,DO had little effects on the removal of COD and great effects on the removal of NH+4-N,namely the removal rate of NH+4-N decreased to 17.1% from 46.4% with the reduction of DO concentration from 4 to 1 mg/L.[Conclusion] Our study could provide theoretical basis for the treatment of high strength ammonia wastewater. 展开更多
关键词 ICISBR CORNCOB C/N ammonia nitrogen wastewater China
下载PDF
Low-temperature conversion of ammonia to nitrogen in water with ozone over composite metal oxide catalyst 被引量:11
3
作者 Yunnen Chen Ye Wu +4 位作者 Chen Liu Lin Guo Jinxia Nie Yu Chen Tingsheng Qiu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期265-273,共9页
As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH rad... As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co3O4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia(50 mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co3O4 molar ratio 8:2, calcined at 500°C for 3 hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO2-4 and HCO-3 could inhibit the catalytic activity while CO2-3 and Br-could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia. 展开更多
关键词 ammonia Metal oxide catalyst Catalytic ozonation Gaseous nitrogen wastewater treatment
原文传递
Study on the mechanism of copper-ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal 被引量:10
4
作者 Cong Peng Liyuan Chai +4 位作者 Chongjian Tang Xiaobo Min Yuxia Song Chengshan Duan Cheng Yu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第1期222-233,共12页
Heavy metals and ammonia are difficult to remove from wastewater,as they easily combine into refractory complexes.The struvite formation method(SFM) was applied for the complex decomposition and simultaneous removal... Heavy metals and ammonia are difficult to remove from wastewater,as they easily combine into refractory complexes.The struvite formation method(SFM) was applied for the complex decomposition and simultaneous removal of heavy metal and ammonia.The results indicated that ammonia deprivation by SFM was the key factor leading to the decomposition of the copper-ammonia complex ion.Ammonia was separated from solution as crystalline struvite,and the copper mainly co-precipitated as copper hydroxide together with struvite.Hydrogen bonding and electrostatic attraction were considered to be the main surface interactions between struvite and copper hydroxide.Hydrogen bonding was concluded to be the key factor leading to the co-precipitation.In addition,incorporation of copper ions into the struvite crystal also occurred during the treatment process. 展开更多
关键词 Copper-ammonia complex ammonia removal Copper hydroxide Co-precipitation Struvite formation Heavy-metal-containing wastewater
原文传递
A full-scale integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering house: performance and microbial characteristics 被引量:3
5
作者 Jianwei Liu Kaixiong Yang +1 位作者 Lin Li Jingying Zhang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第4期171-178,共8页
A full-scale integrated-bioreactor consisting of a suspended zone and an immobilized zone was employed to treat the ordours emitted from a wastewater treatment plant. The inlet concentrations of H,S and NH3 were 1.6-3... A full-scale integrated-bioreactor consisting of a suspended zone and an immobilized zone was employed to treat the ordours emitted from a wastewater treatment plant. The inlet concentrations of H,S and NH3 were 1.6-38.6 mg.m-3 and 0.1 6.7 mg.m-3 respectively, while the steady-state outlet concentrations were reduced to 0-2.8mg.m - for H2S and 0-0.5mg.m for NH3. BothH2SandNH3 were eliminated effectively by the integrated-bioreactor. The removal efficiencies of H2S and NH3 differed between the two zones. Four species of microorganisms related to the degradation of H2S and NH3 were isolated. The characteristics and distributions of the microbes in the bioreactor depended on the inlet concentration of substrates and the micro-environmental conditions in the individual zones. Product analysis indicated that most of the H2S was oxidized into sulfate in the immobilized zone but was dissolved into the liquid phase in the suspended zone. A large amount of NH3 was converted into nitrate and nitrite by nitration in the suspended zone, whereas only a small amount of NH3 was transferred to the aqueous phase mainly by absorption or chemical neutralization in the immobilized zone. Different microbial populations dominated the individual zones, and the major biodegradation products varied accordingly. 展开更多
关键词 Biological deodorization Microbial characteristics ammonia Hydrogen sulfide wastewater treatment plant
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部