Field experiments were conducted in 2006 to investigate the impacts of modified rice cultivation systems on: grain yield, N uptake, ammonia volatilization from rice soil and N use efficiency (ANUE, agronomic N use eff...Field experiments were conducted in 2006 to investigate the impacts of modified rice cultivation systems on: grain yield, N uptake, ammonia volatilization from rice soil and N use efficiency (ANUE, agronomic N use efficiency;and PFP, partial factor productivity of applied N). The trials compared rice production using modified methods of irrigation, planting, weeding and nutrient management (the system of rice intensification, SRI) with traditional flooding (TF). The effects of different N application rates (0, 80, 160, 240 kg ha-1) and of N rates interacting with cultivation methods were also evaluated. Grain yields ranged from 5.6 to 6.9 t ha-1 with SRI, and from 4.0 to 6.1 t ha-1 under TF management. On average, grain yields under SRI were 24% higher than that with TF. Ammonia volatilization was increased significantly under SRI compared with TF and the average total amount of ammonia volatilization loss during the rice growth stage under SRI was 22% higher than TF. With increases in application rate, N uptake by rice increased, and the ratio of N in the seed to total N in the plant decreased. Furthermore, results showed that higher ANUE was achieved at a relatively low N fertilizer rate (80 kg ha-1 N) with SRI. Results of these studies suggest that SRI increased rice yield and N uptake and improved ammonia volatilization loss from rice soil compared with TF. Moreover, there were significant interactions between N application rates and cultivation methods. We conclude that it was the most important to adjust the amount of N application under SRI, such as reducing the amount of N application. Research on effects of N fertilizer on rice yield and environmental pollution under SRI may be worth further studying.展开更多
Use of saline water in irrigated agriculture has become an important means for alleviating water scarcity in arid and semi-arid regions. The objective of this field experiment was to evaluate the effects of irrigation...Use of saline water in irrigated agriculture has become an important means for alleviating water scarcity in arid and semi-arid regions. The objective of this field experiment was to evaluate the effects of irrigation water salinity and N fertilization on soil physicochemical and biological properties related to nitrification and denitrification. A 3×2 factorial design was used with three levels of irrigation water salinity(0.35, 4.61 and 8.04 d S m-1) and two N rates(0 and 360 kg N ha^(-1)). The results indicated that irrigation water salinity and N fertilization had significant effects on many soil physicochemical properties including water content, salinity, p H, NH_4-N concentration, and NO_3-N concentration. The abundance(i.e., gene copy number) of ammonia-oxidizing archaea(AOA) was greater than that of ammonia-oxidizing bacteria(AOB) in all treatments. Irrigation water salinity had no significant effect on the abundance of AOA or AOB in unfertilized plots. However, saline irrigation water(i.e., the 4.61 and 8.04 d S m-1 treatments) reduced AOA abundance, AOB abundance and potential nitrification rate in N fertilized plots. Regardless of N application rate, saline irrigation water increased urease activity but reduced the activities of both nitrate reductase and nitrite reductase. Irrigation with saline irrigation water significantly reduced cotton biomass, N uptake and yield. Nitrogen application exacerbated the negative effect of saline water. These results suggest that brackish water and saline water irrigation could significantly reduce both the abundance of ammonia oxidizers and potential nitrification rates. The AOA may play a more important role than AOB in nitrification in desert soil.展开更多
Instead of the energy-intensive Haber-Bosch process,the researchers proposed a way to produce ammonia using water and nitrogen as feedstock,powered by electricity,without polluting the environment.Nevertheless,how to ...Instead of the energy-intensive Haber-Bosch process,the researchers proposed a way to produce ammonia using water and nitrogen as feedstock,powered by electricity,without polluting the environment.Nevertheless,how to design efficient electrocatalyst for electrocatalytic nitrogen reduction reaction(NRR)is still urgent and challenging.Herein,a strategy is proposed to adjust the morphology and surface electronic structure of electrocatalyst by optimizing material synthesis method.LiNbO3(lithium niobate,LN)cubes with oxygen-rich vacancy and regular morphology were synthesized by hydrothermal synthesis and followed molten salt calcination process,which were used for electrocatalytic NRR under mild conditions.Compared with LN nanoparticles synthesized by solid phase reaction,LN cubes exhibit better NRR performance,with the highest ammonia yield rate(13.74μg.h^(-1).mg^(-1))at the best potential of-0.45V(vs.reversible hydrogen electrode,RHE)and the best Faradaic efficiency(85.43%)at-0.4 V.Moreover,LN cubes electrocatalyst also demonstrates high stability in 7 cycles and 18 h current-time tests.Further investigation of the reaction mechanism confirmed that the structure of oxygen vacancy could adjust the electronic structure of the electrocatalyst,which was conducive to the adsorption and activation of N_(2) molecule and also increased the ECSA of electrocatalyst,thus providing more active sites for the NRR process.展开更多
Anaerobic digestion is a promising technology that could provide an option for managing animal waste with reduced greenhouse gas emissions. A three-year (2006-2008) field experiment was conducted at Star City, Saskatc...Anaerobic digestion is a promising technology that could provide an option for managing animal waste with reduced greenhouse gas emissions. A three-year (2006-2008) field experiment was conducted at Star City, Saskatchewan, Canada, to compare the effects of land-applied anaerobically digested swine manure (ADSM), conventionally treated swine manure (CTSM) and N fertilizer on grain yield of barley, applied N use efficiency (ANUE, kg·grain·kg-1 of applied N·ha-1), ammonia (NH3) volatilization and nitrous oxide (N2O) emissions. Treatments included spring and autumn applications of CTSM and ADSM at a 1x rate (10,000 and 7150 L·ha-1, respectively) applied every year, a 3x rate (30,000 and 21,450 L·ha-1, respectively) applied once at the beginning of the experiment, plus a treatment receiving commercial fertilizer (UAN at 60 kg·N·ha-1·yr-1) and a zero-N control. There was a significant grain yield response of barley to applied N in all three years. The ANUE of ADSM or CTSM applied once at the 3x rate were lower than annual applications at the 1x rate (grain yield by 595 kg·ha-1 and NFUE by 6 kg·grain·kg-1 of applied N·ha-1). On average, agronomic performance of ADSM was similar to CTSM. The APNU of N fertilizer was greater than the 3x rate but lower than the 1x rate of ADSM or CTSM. Ammonia loss from ADSM was similar to CTSM, except for much higher loss of NH3-N from CTSM at the 3x rate applied in the autumn (8100 g·N·ha-1) compared to the other treatments (1100 - 2600 g·N·ha-1). The percentage of applied N lost as N2O gas was generally higher for treatments receiving CTSM (4.0%) compared to ADSM (1.4%). In conclusion, the findings suggest that ADSM is equal or slightly better than CTSM in terms of agronomic performance, but has lower environmental impact.展开更多
在大田条件下采用密闭室间歇通气法和密闭式静态箱法研究了控释氮肥不同施氮水平对春玉米土壤N_2O排放和氨挥发的影响。结果表明:与T2(普通尿素)处理相比,控释氮肥处理(T3~T6)N_2O排放通量变化趋势平稳,无明显的峰值;从累积排放量上看,...在大田条件下采用密闭室间歇通气法和密闭式静态箱法研究了控释氮肥不同施氮水平对春玉米土壤N_2O排放和氨挥发的影响。结果表明:与T2(普通尿素)处理相比,控释氮肥处理(T3~T6)N_2O排放通量变化趋势平稳,无明显的峰值;从累积排放量上看,与T2处理相比,T3(240 kg N·hm^(-2))、T4(216 kg N·hm^(-2))、T5(192 kg N·hm^(-2))、T6(168 kg N·hm^(-2))处理N_2O排放量分别减少27.80%、33.66%、45.85%、55.12%,但T2与T3、T4处理之间差异不显著(P>0.05),与T5、T6处理之间差异显著(P<0.05);各控释氮肥处理间差异均不显著(P>0.05),与施肥量呈极显著的指数函数关系(P<0.01)。T2处理氨挥发速率在施肥后的2~4 d内出现峰值,而各控释氮肥处理在基肥、苗肥、穗肥施用后,分别在第9、6、1~2 d出现峰值;与T2处理相比,T3、T4处理氨挥发量反而分别增加了8.02%和0.97%,但差异均不显著(P>0.05),T5、T6处理氨挥发量分别减少了8.86%(P>0.05)和16.65%(P<0.05);各控释氮肥处理间,与T3相比,T4、T5、T6处理氨挥发量分别减少了6.53%(P>0.05)、15.62%(P<0.05)和22.84%(P<0.01),且氨挥发量与施氮量呈极显著线性关系(P<0.01)。从产量上看,各施氮肥处理玉米产量均显著高于不施氮肥处理,但各施氮肥处理间差异不显著(P>0.05)。综合产量和N_2O排放、氨挥发考虑,控释氮肥的合理减氮施用能够发挥更大的环境效益。展开更多
文摘Field experiments were conducted in 2006 to investigate the impacts of modified rice cultivation systems on: grain yield, N uptake, ammonia volatilization from rice soil and N use efficiency (ANUE, agronomic N use efficiency;and PFP, partial factor productivity of applied N). The trials compared rice production using modified methods of irrigation, planting, weeding and nutrient management (the system of rice intensification, SRI) with traditional flooding (TF). The effects of different N application rates (0, 80, 160, 240 kg ha-1) and of N rates interacting with cultivation methods were also evaluated. Grain yields ranged from 5.6 to 6.9 t ha-1 with SRI, and from 4.0 to 6.1 t ha-1 under TF management. On average, grain yields under SRI were 24% higher than that with TF. Ammonia volatilization was increased significantly under SRI compared with TF and the average total amount of ammonia volatilization loss during the rice growth stage under SRI was 22% higher than TF. With increases in application rate, N uptake by rice increased, and the ratio of N in the seed to total N in the plant decreased. Furthermore, results showed that higher ANUE was achieved at a relatively low N fertilizer rate (80 kg ha-1 N) with SRI. Results of these studies suggest that SRI increased rice yield and N uptake and improved ammonia volatilization loss from rice soil compared with TF. Moreover, there were significant interactions between N application rates and cultivation methods. We conclude that it was the most important to adjust the amount of N application under SRI, such as reducing the amount of N application. Research on effects of N fertilizer on rice yield and environmental pollution under SRI may be worth further studying.
基金funded by the National Natural Science Foundation of China (31360504)the Innovative Research Foundation for Excellent Young Scientists of Xinjiang Production and Construction Crops, China (2014CD002)
文摘Use of saline water in irrigated agriculture has become an important means for alleviating water scarcity in arid and semi-arid regions. The objective of this field experiment was to evaluate the effects of irrigation water salinity and N fertilization on soil physicochemical and biological properties related to nitrification and denitrification. A 3×2 factorial design was used with three levels of irrigation water salinity(0.35, 4.61 and 8.04 d S m-1) and two N rates(0 and 360 kg N ha^(-1)). The results indicated that irrigation water salinity and N fertilization had significant effects on many soil physicochemical properties including water content, salinity, p H, NH_4-N concentration, and NO_3-N concentration. The abundance(i.e., gene copy number) of ammonia-oxidizing archaea(AOA) was greater than that of ammonia-oxidizing bacteria(AOB) in all treatments. Irrigation water salinity had no significant effect on the abundance of AOA or AOB in unfertilized plots. However, saline irrigation water(i.e., the 4.61 and 8.04 d S m-1 treatments) reduced AOA abundance, AOB abundance and potential nitrification rate in N fertilized plots. Regardless of N application rate, saline irrigation water increased urease activity but reduced the activities of both nitrate reductase and nitrite reductase. Irrigation with saline irrigation water significantly reduced cotton biomass, N uptake and yield. Nitrogen application exacerbated the negative effect of saline water. These results suggest that brackish water and saline water irrigation could significantly reduce both the abundance of ammonia oxidizers and potential nitrification rates. The AOA may play a more important role than AOB in nitrification in desert soil.
基金the financial support from the National Natural Science Foundation of China(22075196,21878204)Key Research and Development Program of Shanxi Province(International Cooperation,201903D421073)Research Project Supported by Shanxi Scholarship Council of China(2022-050).
文摘Instead of the energy-intensive Haber-Bosch process,the researchers proposed a way to produce ammonia using water and nitrogen as feedstock,powered by electricity,without polluting the environment.Nevertheless,how to design efficient electrocatalyst for electrocatalytic nitrogen reduction reaction(NRR)is still urgent and challenging.Herein,a strategy is proposed to adjust the morphology and surface electronic structure of electrocatalyst by optimizing material synthesis method.LiNbO3(lithium niobate,LN)cubes with oxygen-rich vacancy and regular morphology were synthesized by hydrothermal synthesis and followed molten salt calcination process,which were used for electrocatalytic NRR under mild conditions.Compared with LN nanoparticles synthesized by solid phase reaction,LN cubes exhibit better NRR performance,with the highest ammonia yield rate(13.74μg.h^(-1).mg^(-1))at the best potential of-0.45V(vs.reversible hydrogen electrode,RHE)and the best Faradaic efficiency(85.43%)at-0.4 V.Moreover,LN cubes electrocatalyst also demonstrates high stability in 7 cycles and 18 h current-time tests.Further investigation of the reaction mechanism confirmed that the structure of oxygen vacancy could adjust the electronic structure of the electrocatalyst,which was conducive to the adsorption and activation of N_(2) molecule and also increased the ECSA of electrocatalyst,thus providing more active sites for the NRR process.
文摘Anaerobic digestion is a promising technology that could provide an option for managing animal waste with reduced greenhouse gas emissions. A three-year (2006-2008) field experiment was conducted at Star City, Saskatchewan, Canada, to compare the effects of land-applied anaerobically digested swine manure (ADSM), conventionally treated swine manure (CTSM) and N fertilizer on grain yield of barley, applied N use efficiency (ANUE, kg·grain·kg-1 of applied N·ha-1), ammonia (NH3) volatilization and nitrous oxide (N2O) emissions. Treatments included spring and autumn applications of CTSM and ADSM at a 1x rate (10,000 and 7150 L·ha-1, respectively) applied every year, a 3x rate (30,000 and 21,450 L·ha-1, respectively) applied once at the beginning of the experiment, plus a treatment receiving commercial fertilizer (UAN at 60 kg·N·ha-1·yr-1) and a zero-N control. There was a significant grain yield response of barley to applied N in all three years. The ANUE of ADSM or CTSM applied once at the 3x rate were lower than annual applications at the 1x rate (grain yield by 595 kg·ha-1 and NFUE by 6 kg·grain·kg-1 of applied N·ha-1). On average, agronomic performance of ADSM was similar to CTSM. The APNU of N fertilizer was greater than the 3x rate but lower than the 1x rate of ADSM or CTSM. Ammonia loss from ADSM was similar to CTSM, except for much higher loss of NH3-N from CTSM at the 3x rate applied in the autumn (8100 g·N·ha-1) compared to the other treatments (1100 - 2600 g·N·ha-1). The percentage of applied N lost as N2O gas was generally higher for treatments receiving CTSM (4.0%) compared to ADSM (1.4%). In conclusion, the findings suggest that ADSM is equal or slightly better than CTSM in terms of agronomic performance, but has lower environmental impact.
文摘在大田条件下采用密闭室间歇通气法和密闭式静态箱法研究了控释氮肥不同施氮水平对春玉米土壤N_2O排放和氨挥发的影响。结果表明:与T2(普通尿素)处理相比,控释氮肥处理(T3~T6)N_2O排放通量变化趋势平稳,无明显的峰值;从累积排放量上看,与T2处理相比,T3(240 kg N·hm^(-2))、T4(216 kg N·hm^(-2))、T5(192 kg N·hm^(-2))、T6(168 kg N·hm^(-2))处理N_2O排放量分别减少27.80%、33.66%、45.85%、55.12%,但T2与T3、T4处理之间差异不显著(P>0.05),与T5、T6处理之间差异显著(P<0.05);各控释氮肥处理间差异均不显著(P>0.05),与施肥量呈极显著的指数函数关系(P<0.01)。T2处理氨挥发速率在施肥后的2~4 d内出现峰值,而各控释氮肥处理在基肥、苗肥、穗肥施用后,分别在第9、6、1~2 d出现峰值;与T2处理相比,T3、T4处理氨挥发量反而分别增加了8.02%和0.97%,但差异均不显著(P>0.05),T5、T6处理氨挥发量分别减少了8.86%(P>0.05)和16.65%(P<0.05);各控释氮肥处理间,与T3相比,T4、T5、T6处理氨挥发量分别减少了6.53%(P>0.05)、15.62%(P<0.05)和22.84%(P<0.01),且氨挥发量与施氮量呈极显著线性关系(P<0.01)。从产量上看,各施氮肥处理玉米产量均显著高于不施氮肥处理,但各施氮肥处理间差异不显著(P>0.05)。综合产量和N_2O排放、氨挥发考虑,控释氮肥的合理减氮施用能够发挥更大的环境效益。