The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ...The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.展开更多
The blood-brain barrier(BBB)(discovered and defined by Max Lewandowsky and Lina Stern,and not,as it is universally,and yet erroneously believed,by Paul Ehrlich(Verkhratsky and Pivoriunas,2023))that separates the nervo...The blood-brain barrier(BBB)(discovered and defined by Max Lewandowsky and Lina Stern,and not,as it is universally,and yet erroneously believed,by Paul Ehrlich(Verkhratsky and Pivoriunas,2023))that separates the nervous system from the circulation is evolutionarily conserved from arthropods to man.The primeval BBB of the invertebrates and some early vertebrates was made solely by glial cells and secured(in invertebrates)by septate junctions.展开更多
Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the in...Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the instantaneous bloodflow velocity distribution.This is mainly due to the lack of measurement technology with high spatial and temporal resolution.Here,we tackle this problem with our recently developed dual-wavelength line-scan third-harmonic generation(THG)imaging technology.Simultaneous acquisition of dual-wavelength THG line-scanning signals enables measurement of bloodflow velocities at two radially symmetric positions in both venules and arterioles in mouse brain in vivo.Our results clearly show that the instantaneous bloodflow velocity is not symmetric under general conditions.展开更多
Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is no...Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is nowadays regarded as one of the major vascular causes of dementia.Radiological signs of small vessel disease include small subcortical infarcts,white matter magnetic resonance imaging hyperintensities,lacunes,enlarged perivascular spaces,cerebral microbleeds,and brain atrophy;however,great heterogeneity in clinical symptoms is observed in small vessel disease patients.The pathophysiology of these lesions has been linked to multiple processes,such as hypoperfusion,defective cerebrovascular reactivity,and blood-brain barrier dysfunction.Notably,studies on small vessel disease suggest that blood-brain barrier dysfunction is among the earliest mechanisms in small vessel disease and might contribute to the development of the hallmarks of small vessel disease.Therefore,the purpose of this review is to provide a new foundation in the study of small vessel disease pathology.First,we discuss the main structural domains and functions of the blood-brain barrier.Secondly,we review the most recent evidence on blood-brain barrier dysfunction linked to small vessel disease.Finally,we conclude with a discussion on future perspectives and propose potential treatment targets and interventions.展开更多
Red blood cell(RBC)aggregation as well as their deformation significantly affects blood microrheology.These processes depend on various factors,one of which is concentration of the nitric oxide,one of the main signali...Red blood cell(RBC)aggregation as well as their deformation significantly affects blood microrheology.These processes depend on various factors,one of which is concentration of the nitric oxide,one of the main signaling molecule in the bloodstream.The purpose of this study was to investigate the effect of nitric oxide on the microrheological properties of red blood cells(RBCs)in RBC samples of various media after the addition of nitric oxide donor sodium nitroprusside in vitro.Microrheological properties were measured using laser aggregometer and ektacytometer based on diffuse light scattering and diffraction of laser light on a suspension of RBCs,respectively.The study found that heparin-stabilized blood showed increased RBC aggregation and deformation with sodium nitroprusside concentrations of 100,and 200M,while EDTA-stabilized blood showed slightly decreased aggregation and unchanged deformation.With washed RBCs in dextran solution,the addition of sodium nitroprusside(in the concentrations of 100,and 200M)resulted in decreased aggregation and increased deformation.These-ndings aid in our understanding of nitric oxide's effect on RBC microrheological properties.展开更多
BACKGROUND Cesarean hemorrhage is one of the serious complications,and short-term massive blood transfusion can easily cause postoperative infection and physical stress response.However,predictive nursing intervention...BACKGROUND Cesarean hemorrhage is one of the serious complications,and short-term massive blood transfusion can easily cause postoperative infection and physical stress response.However,predictive nursing intervention has important clinical significance for it.AIM To explore the effect of predictive nursing intervention on the stress response and complications of women undergoing short-term mass blood transfusion during cesarean section(CS).METHODS A clinical medical record of 100 pregnant women undergoing rapid mass blood transfusion during sections from June 2019 to June 2021.According to the different nursing methods,patients divided into control group(n=50)and observation group(n=50).Among them,the control group implemented routine nursing,and the observation group implemented predictive nursing intervention based on the control group.Moreover,compared the differences in stress res-ponse,complications,and pain scores before and after the nursing of pregnant women undergoing rapid mass blood transfusion during CS.RESULTS The anxiety and depression scores of pregnant women in the two groups were significantly improved after nursing,and the psychological stress response of the observation group was significantly lower than that of the control group(P<0.05).The heart rate and mean arterial pressure(MAP)of the observation group during delivery were lower than those of the control group,and the MAP at the end of delivery was lower than that of the control group(P<0.05).Moreover,different pain scores improved significantly in both groups,with the observation group considerably less than the control group(P<0.05).After nursing,complications such as skin rash,urinary retention,chills,diarrhea,and anaphylactic shock in the observation group were 18%,which significantly higher than in the control group(4%)(P<0.05).CONCLUSION Predictive nursing intervention can effectively relieve the pain,reduce the incidence of complications,improve mood and stress response,and serve as a reference value for the nursing of women undergoing rapid mass transfusion during CS.展开更多
BACKGROUND Colorectal cancer(CRC)has one of the highest morbidity and mortality rates among digestive tract tumors.Intra-abdominal infection(IAI)is a common postoperative complication that affects the clinical outcome...BACKGROUND Colorectal cancer(CRC)has one of the highest morbidity and mortality rates among digestive tract tumors.Intra-abdominal infection(IAI)is a common postoperative complication that affects the clinical outcomes of patients with CRC and hinders their rehabilitation process.However,the factors influencing abdominal infection after CRC surgery remain unclear;further,prediction models are rarely used to analyze preoperative laboratory indicators and postoperative complications.AIM To explore the predictive value of preoperative blood markers for IAI after radical resection of CRC.METHODS The data of 80 patients who underwent radical resection of CRC in the Anorectal Surgery Department of Suzhou Hospital affiliated with Anhui Medical University were analyzed.These patients were categorized into IAI(n=15)and non-IAI groups(n=65)based on whether IAI occurred.Influencing factors were compared;general data and laboratory indices of both groups were identified.The relationship between the indicators was assessed.Further,a nomogram prediction model was developed and evaluated;its utility and clinical applic-ability were assessed.RESULTS The risk factors for IAI after radical resection of CRC were neutrophil-lymphocyte ratio(NLR),platelet-lymphocyte ratio(PLR),systemic immune-inflammation index(SII),and carcinoembryonic antigen(CEA)levels.NLR was correlated with PLR and SII(r=0.604,0.925,and 0.305,respectively),while PLR was correlated with SII(r=0.787).The nomogram prediction model demonstrated an area under the curve of 0.968[95%confidence interval(CI):0.948-0.988]in the training set(n=60)and 0.926(95%CI:0.906-0.980)in the validation set(n=20).The average absolute errors of the calibration curves for the training and validation sets were 0.032 and 0.048,respectively,indicating a good model fit.The decision curve analysis curves demonstrated high net income above the 5%threshold,indicating the clinical practicality of the model.CONCLUSION The nomogram model constructed using NLR,PLR,SII,and CEA levels had good accuracy and reliability in predicting IAI after radical resection of CRC,potentially aiding clinical treatment decision-making.展开更多
Background:High blood pressure(BP)is a major contributor to mortality and cardiovascular diseases.Despite the known benefits of exercise for reducing BP,it is crucial to identify the most effective physical activity(P...Background:High blood pressure(BP)is a major contributor to mortality and cardiovascular diseases.Despite the known benefits of exercise for reducing BP,it is crucial to identify the most effective physical activity(PA)intervention.This systematic review and network meta-analysis(NMA)aimed to evaluate the available evidence on the effectiveness of various PA interventions for reducing BP and to determine their hierarchy based on their impact on BP.Methods:A search of PubMed,SPORTDiscus,PsycINFO,Web of Science,CINAHL,Cochrane,and Eric databases was conducted up to December 2022 for this systematic review and NMA.Randomized controlled trials and quasi-experimental studies targeting healthy children and adolescents aged 6-12 years old were included in this study.Only studies that compared controlled and intervention groups using PA or exercise as the major influence were included.We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines.Three independent investigators performed the literature screening,data extraction,and risk of bias assessment.We used Bayesian arm-based NMA to synthesize the data.The primary outcomes were systolic BP and diastolic BP.We calculated the mean differences(MDs)in systolic BP and diastolic BP before and after treatment.Mean treatment differences were estimated using NMA and random-effect models.Results:We synthesized 27 studies involving 15,220 children and adolescents.PA combined with nutrition and behavior change was the most effective intervention for reducing both systolic BP and diastolic BP(MD=-8.64,95%credible interval(95%CI):-11.44 to-5.84;MD=-6.75,95%CI:-10.44 to-3.11),followed by interventions with multiple components(MD=-1.39,95%CI:-1.94 to-0.84;MD=-2.54,95%CI:-4.89 to-0.29).Conclusion:Our findings suggest that PA interventions incorporating nutrition and behavior change,followed by interventions with multiple components,are most effective for reducing both systolic BP and diastolic BP in children and adolescents.展开更多
The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving t...The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving the NH_(3) selectivity is to facilitate adsorption and activation of NO_(2)^(−),which is generally undesirable in unitary species.In this work,an efficient NO_(2)^(−)RR catalyst is constructed by cooperating Pd with In2O3,in which NO_(2)^(−)could adsorb on interfacial dual-site through“Pd–N–O–In”linkage,leading to strengthened NO_(2)^(−)adsorption and easier N=O bond cleavage than that on unitary Pd or In2O3.Moreover,the Pd/In_(2)O_(3)composite exhibits moderate H^(*)adsorption,which may facilitate protonation kinetics while inhibiting competitive HER.As a result,it exhibits a fairly high NH_(3)yield rate of 622.76 mmol h^(−1)g^(−1)cat with a Faradaic efficiency(FE)of 95.72%,good selectivity of 91.96%,and cycling stability towards the NO_(2)^(−)RR,surpassing unitary In_(2)O_(3)and Pd/C electrocatalysts.Besides,computed results indicate that NH_(3)production on Pd/In_(2)O_(3)follows the deoxidation to hydrogenation pathway.This work highlights the significance of H^(*)and NO_(2)^(−)adsorption modulation and N=O activation in NO_(2)^(−)RR electrochemistry by creating synergy between a mediocre catalyst with an appropriate cooperator.展开更多
Electrochemical nitrite reduction reaction(NO_(2)^(-)RR) is a potential sustainable route for regulating the nitrogen cycle and ambient ammonia(NH_(3)) synthesis.However,it remains a challenge to precisely regulate th...Electrochemical nitrite reduction reaction(NO_(2)^(-)RR) is a potential sustainable route for regulating the nitrogen cycle and ambient ammonia(NH_(3)) synthesis.However,it remains a challenge to precisely regulate the reaction pathways and inhibit competing reactions(e.g.hydrogenolysis) for efficient and selective NH_(3) production in an aqueous solution environment.Here,we utilize the Schottky barrier-induced surface electric field to construct high-density electron-deficient Pd nanoparticles by modulating the N content in the carbon carrier to promote the enrichment and immobilization of NO_(2)^(-)on the electrode surface,which ensures the ultimate selectivity for NH_(3).With these properties,Pd@N_(0.14)C with the highest N content achieved excellent catalytic performance for the reduction of NO_(2)^(-)to NH_(3) with the 100% Faraday efficiency at-0.5 and-0.6 V vs,reversible hydrogen electrode(RHE) for NH_(3) production,which was significantly better than Pd/C and Pd@N_(x)C samples with lower N content.This study opens new avenues for rational construction of efficient electrocatalysts for nitrite removal and NH_(3) electrosynthesis.展开更多
Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,whic...Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,which is vital to elucidate the underlying mechanism of ammonia nitrogen.In this study,clams R.philippinarum were exposed to ammonia nitrogen for 21 d at two environmentally relevant concentrations.The tandem mass tags approach(TMT)was applied to assay the differentially expressed proteins(DEPs)in clam gill tissues on the 3 rd and 21 st day.Finally,a total of 7263 proteins were identified.Bioinformatics analyses revealed that clam protein profiles changed in dose-and time dependent manner after ammonia nitrogen exposure.We inferred that the clams may face heavy challenges after ammonia exposure,such as unbalanced gender ratio,lysosomal disease,energy lack,neurological disorders,altered glutamine metabolism,increased lipid synthesis,and impaired immunity.Variation profiles of enzyme activities of glutaminase and glutamine synthase provided direct evidence to verify the related inference from proteome data.Most of the inferred toxic effects merit further study.This study identified important proteins related to ammonia nitrogen toxicity in the clam and indicated the severe stress of marine ammonia pollution on the healthy development of mollusc aquaculture.展开更多
For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based ...For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios.展开更多
For carbon-free electrochemical fuel formation,the electrochemical cell must be powered by renewable energy.Obtaining solar-powered H_(2) fuel from water typically requires multiple photovoltaic cells and/or junctions...For carbon-free electrochemical fuel formation,the electrochemical cell must be powered by renewable energy.Obtaining solar-powered H_(2) fuel from water typically requires multiple photovoltaic cells and/or junctions to drive the water splitting reaction.Because of the lower thermodynamic requirements to oxidize ammonia compared to water,solar cells with smaller open circuit voltages can provide the required potential for ammonia splitting.In this work,a single perovskite solar cell with an open-circuit potential of 1.08 V is coupled to a 2-electrode electrochemical cell employing hybrid electroanodes functionalized with Ru-based molecular catalysts.The device is active for more than 30 min,producing N_(2) and H_(2) in a 1:2.9 ratio with 89%faradaic efficiency with no external applied bias.This work illustrates that hydrogen production from ammonia can be driven by conventional semiconductors.展开更多
Thyroid nodules are a common clinical problem caused by various factors,including environmental and nutritional factors and genetic background.The environment can modulate and influence not only the risk of thyroid no...Thyroid nodules are a common clinical problem caused by various factors,including environmental and nutritional factors and genetic background.The environment can modulate and influence not only the risk of thyroid nodules but also the severity of disease in humans[1].The environment is awash with elements,and all mineral elements,including heavy metals and trace elements,are considered potentially toxic.A significantly higher incidence of thyroid cancer has been reported in populations exposed to low doses of metallic elements in volcanic areas over a long period[2].As research on thyroid disorders continues,it is becoming clear that abnormalities in trace elements in the body can affect the development of thyroid-related disorders.展开更多
This study aimed to investigate the effects of ammonia addition on ethylene counter-flow diffusion flames with different diluents on the fuel or oxidizer side,using kinetic analyses.A special emphasis was put on asses...This study aimed to investigate the effects of ammonia addition on ethylene counter-flow diffusion flames with different diluents on the fuel or oxidizer side,using kinetic analyses.A special emphasis was put on assessing the coupled chemical effects of NH_(3) and CO_(2) on C2H4 combustion chemistry.The chemical effects could be evaluated by comparing fictitious inert NH_(3) or CO_(2) with normal active NH_(3) or CO_(2).The results revealed that the addition of NH_(3) decreased the mole fractions and production rates of key soot precursors,such as acetylene,propynyl,and benzene.When CO_(2) was used as the dilution gas,the coupled chemical effects of NH_(3) and CO_(2) were affected by the chemical effects of CO_(2) to varying degrees.With the oxidizer-side CO_(2) addition,the coupled chemical effects of NH_(3) and CO_(2) reduced the mole fractions of H,O,OH radicals,acetylene,propynyl,and benzene,while the effects differed from the fuel-side CO_(2) addition.The coupled chemical effects of NH_(3) and CO_(2) also promoted the formation of aldehyde contaminants,such as acetaldehyde,to some extent,particularly with CO_(2) addition on the oxidizer side.展开更多
Cardiovascular disease(CVD)is the leading cause of death worldwide[1].Arterial sclerosis(AS)and hypertension are the main risk factors and pathological bases of CVD.Higher pulse wave velocity(PWV)measurements could re...Cardiovascular disease(CVD)is the leading cause of death worldwide[1].Arterial sclerosis(AS)and hypertension are the main risk factors and pathological bases of CVD.Higher pulse wave velocity(PWV)measurements could reflect early progression of atherosclerosis.Based on the structure-function properties of the vascular wall and hemodynamics,strong evidence suggests that any increase in blood pressure levels can mechanically impair the ability of the endothelium to maintain vascular homeostasis[2].High levels of blood pressure parameters,such as systolic blood pressure(SBP),diastolic blood pressure(DBP),pulse pressure(PP),and mean arterial pressure(MAP)have been identified as essential risk biomarkers for atherosclerosis.展开更多
Di(2-ethylhexyl)phthalate(DEHP)is a widely used plasticizer known for its reproductive developmental and immune system toxicity,mainly through esophagal,dermal,and respiratory exposure^([1-3]).Maternal exposure to DEH...Di(2-ethylhexyl)phthalate(DEHP)is a widely used plasticizer known for its reproductive developmental and immune system toxicity,mainly through esophagal,dermal,and respiratory exposure^([1-3]).Maternal exposure to DEHP during pregnancy can lead to adverse birth outcomes in offspring,including impacts on the thyroid system of adolescent offspring^([2-4]).展开更多
Introduction: One of the most frequent observations in long-term blood donation is chronic iron deficiency, which can develop into anaemia. The majority of blood screening methods employed by blood banks do not incorp...Introduction: One of the most frequent observations in long-term blood donation is chronic iron deficiency, which can develop into anaemia. The majority of blood screening methods employed by blood banks do not incorporate iron-status markers, which may result in potential subclinical iron deficiency. The aim of this study was to evaluate the effects of repeated blood donation on the levels of iron in the body and to guide blood donors in preventing the depletion of iron stores. Methods: Regular blood donors were categorised into distinct groups according to the number of donations they gave, and then the correlation between these groups and their bodies’ iron levels was examined. Different parameters were employed to identify iron deficiency and iron depletion in blood donors: serum ferritin, mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), total iron-binding capacity (TIBC), and serum iron. Results: The study included 300 individuals who regularly and willingly donated blood. There were no iron insufficiency cases among those donating blood for the first time (Group I). However, 15.5% of individuals who had donated once before (Group II) had ferritin levels of 15 - 30 μg/dl (ng/ml), indicating reduced iron stores. The rate increased to 18% (37 out of 206 individuals) among regular blood donors (Groups III, IV, and V). Iron deficiency (depletion) prevalence among regular blood donors in Groups III, IV, and V was 5.9% (12 out of 206) and 50.4% (100 out of 206). Donors who had donated blood most frequently had the lowest levels of haematological markers MCH, MCHC, and TIBC. Provide the p-values representing the differences between the means of MCV, MCH, iron, TIBC, and ferritin levels when comparing donor groups with the control group (Group I) based on the frequency of donations. Indicate statistically significant differences where the p-value is less than 0.0125. This significance level is adjusted based on the Bonferroni method, considering multiple independent tests. The result shows that the Iron parameter for the comparison between Group I and Group III and Group I and Group IV suggests a statistically significant difference in iron levels between these donor groups. Conclusion: The findings of this study show that a higher times of donations lads to a higher occurrence of depleted iron stores and subsequent erythropoiesis with iron deficiency by one donor from every three healthy donors. The iron and ferritin concentrations were within the normal range in group one (Control group) and reduced in the other four groups (G-2 to G-5). However, the level of haemoglobin remained within an acceptable range for blood donation. This outcome suggests that it may be necessary to reassess the criteria for accepting blood donors. The average serum ferritin levels were examined in all five groups (G-1 to G-5), both for males and females, and significant variations were seen among the groups under study. This study found that 35% of the individuals who regularly donate blood have iron-deficient anaemia (sideropenia). This suggests that it would be beneficial to test for serum ferritin at an earlier stage, ideally after three donations.展开更多
Introduction:Fluid and positron emission tomography(PET)biomarkers that enable the detection of the hallmark proteins of Alzheimer’s disease(AD)(amyloid and tau)have revolutionized our approach to the diagnosis of AD...Introduction:Fluid and positron emission tomography(PET)biomarkers that enable the detection of the hallmark proteins of Alzheimer’s disease(AD)(amyloid and tau)have revolutionized our approach to the diagnosis of AD.The evolution of AD diagnostic criteria to include biological characterization(Alzheimer’s Association Working Group,2023)provides an appropriate framework to reduce levels of clinico-pathologic mismatch and improve in-vivo diagnostic accuracy.As the therapeutic landscape for neurodegenerative disease evolves,it is increasingly incumbent on clinicians to provide timely,and pathologically precise diagnoses for patients.However,the expensive and invasive nature of these tests limits their scalability.展开更多
Background:Development and homeostasis of the brain are enabled through the precise control of the cell microenvironment by the blood-brain barrier(BBB),which interfaces between the brain parenchyma and the lumen of b...Background:Development and homeostasis of the brain are enabled through the precise control of the cell microenvironment by the blood-brain barrier(BBB),which interfaces between the brain parenchyma and the lumen of blood microvessels,and by the blood-cerebrospinal fluid barrier,which separates the cerebrospinal fluid from the blood vessels of the choroid plexus(Villabona-Rueda et al.,2019).Here,the focus will be on the BBB,the impairment of which is considered the earliest common denominator in neurovascular diseases.展开更多
基金supported by the National Natural Science Foundation of China(22108238,21878259)the Zhejiang Provincial Natural Science Foundation of China(LR18B060001)+5 种基金Anhui Provincial Natural Science Founda-tion(1908085QB68)the Natural Science Foundation of the Anhui Higher Education Institutions of China(KJ2020A0275)Major Science and Technology Project of Anhui Province(201903a05020055)Foundation of Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology(ZJKL-ACEMT-1802)China Postdoctoral Science Foundation(2019M662060,2020T130580)Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology(BM2012110).
文摘The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.
基金funding from European Regional Development Fund(project No 13.1.1-LMT-K-718-05-0005)under grant agreement with the Research Council of Lithuania(LMTLT)。
文摘The blood-brain barrier(BBB)(discovered and defined by Max Lewandowsky and Lina Stern,and not,as it is universally,and yet erroneously believed,by Paul Ehrlich(Verkhratsky and Pivoriunas,2023))that separates the nervous system from the circulation is evolutionarily conserved from arthropods to man.The primeval BBB of the invertebrates and some early vertebrates was made solely by glial cells and secured(in invertebrates)by septate junctions.
基金funded by the National Natural Science Foundation of China(Grant/Award Numbers 62075135 and 61975126)the Science and Technology Innovation Commission of Shenzhen(Grant/Award Numbers JCYJ20190808174819083 and JCYJ20190808175201640)Shenzhen Science and Technology Planning Project(ZDSYS 20210623092006020).
文摘Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the instantaneous bloodflow velocity distribution.This is mainly due to the lack of measurement technology with high spatial and temporal resolution.Here,we tackle this problem with our recently developed dual-wavelength line-scan third-harmonic generation(THG)imaging technology.Simultaneous acquisition of dual-wavelength THG line-scanning signals enables measurement of bloodflow velocities at two radially symmetric positions in both venules and arterioles in mouse brain in vivo.Our results clearly show that the instantaneous bloodflow velocity is not symmetric under general conditions.
基金supported by China Scholarship Council(202208210093,to RJ)。
文摘Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is nowadays regarded as one of the major vascular causes of dementia.Radiological signs of small vessel disease include small subcortical infarcts,white matter magnetic resonance imaging hyperintensities,lacunes,enlarged perivascular spaces,cerebral microbleeds,and brain atrophy;however,great heterogeneity in clinical symptoms is observed in small vessel disease patients.The pathophysiology of these lesions has been linked to multiple processes,such as hypoperfusion,defective cerebrovascular reactivity,and blood-brain barrier dysfunction.Notably,studies on small vessel disease suggest that blood-brain barrier dysfunction is among the earliest mechanisms in small vessel disease and might contribute to the development of the hallmarks of small vessel disease.Therefore,the purpose of this review is to provide a new foundation in the study of small vessel disease pathology.First,we discuss the main structural domains and functions of the blood-brain barrier.Secondly,we review the most recent evidence on blood-brain barrier dysfunction linked to small vessel disease.Finally,we conclude with a discussion on future perspectives and propose potential treatment targets and interventions.
基金supported by the Russian Science Foundation grant(No.22-15-00120)supported by the grant(No.21-2-10-59-1)from the Foundation for the Development of Theoretical Physics and Mathematics BASIS.
文摘Red blood cell(RBC)aggregation as well as their deformation significantly affects blood microrheology.These processes depend on various factors,one of which is concentration of the nitric oxide,one of the main signaling molecule in the bloodstream.The purpose of this study was to investigate the effect of nitric oxide on the microrheological properties of red blood cells(RBCs)in RBC samples of various media after the addition of nitric oxide donor sodium nitroprusside in vitro.Microrheological properties were measured using laser aggregometer and ektacytometer based on diffuse light scattering and diffraction of laser light on a suspension of RBCs,respectively.The study found that heparin-stabilized blood showed increased RBC aggregation and deformation with sodium nitroprusside concentrations of 100,and 200M,while EDTA-stabilized blood showed slightly decreased aggregation and unchanged deformation.With washed RBCs in dextran solution,the addition of sodium nitroprusside(in the concentrations of 100,and 200M)resulted in decreased aggregation and increased deformation.These-ndings aid in our understanding of nitric oxide's effect on RBC microrheological properties.
文摘BACKGROUND Cesarean hemorrhage is one of the serious complications,and short-term massive blood transfusion can easily cause postoperative infection and physical stress response.However,predictive nursing intervention has important clinical significance for it.AIM To explore the effect of predictive nursing intervention on the stress response and complications of women undergoing short-term mass blood transfusion during cesarean section(CS).METHODS A clinical medical record of 100 pregnant women undergoing rapid mass blood transfusion during sections from June 2019 to June 2021.According to the different nursing methods,patients divided into control group(n=50)and observation group(n=50).Among them,the control group implemented routine nursing,and the observation group implemented predictive nursing intervention based on the control group.Moreover,compared the differences in stress res-ponse,complications,and pain scores before and after the nursing of pregnant women undergoing rapid mass blood transfusion during CS.RESULTS The anxiety and depression scores of pregnant women in the two groups were significantly improved after nursing,and the psychological stress response of the observation group was significantly lower than that of the control group(P<0.05).The heart rate and mean arterial pressure(MAP)of the observation group during delivery were lower than those of the control group,and the MAP at the end of delivery was lower than that of the control group(P<0.05).Moreover,different pain scores improved significantly in both groups,with the observation group considerably less than the control group(P<0.05).After nursing,complications such as skin rash,urinary retention,chills,diarrhea,and anaphylactic shock in the observation group were 18%,which significantly higher than in the control group(4%)(P<0.05).CONCLUSION Predictive nursing intervention can effectively relieve the pain,reduce the incidence of complications,improve mood and stress response,and serve as a reference value for the nursing of women undergoing rapid mass transfusion during CS.
基金Supported by Suzhou Health Scientific Research Project,No.SZWJ2022a001.
文摘BACKGROUND Colorectal cancer(CRC)has one of the highest morbidity and mortality rates among digestive tract tumors.Intra-abdominal infection(IAI)is a common postoperative complication that affects the clinical outcomes of patients with CRC and hinders their rehabilitation process.However,the factors influencing abdominal infection after CRC surgery remain unclear;further,prediction models are rarely used to analyze preoperative laboratory indicators and postoperative complications.AIM To explore the predictive value of preoperative blood markers for IAI after radical resection of CRC.METHODS The data of 80 patients who underwent radical resection of CRC in the Anorectal Surgery Department of Suzhou Hospital affiliated with Anhui Medical University were analyzed.These patients were categorized into IAI(n=15)and non-IAI groups(n=65)based on whether IAI occurred.Influencing factors were compared;general data and laboratory indices of both groups were identified.The relationship between the indicators was assessed.Further,a nomogram prediction model was developed and evaluated;its utility and clinical applic-ability were assessed.RESULTS The risk factors for IAI after radical resection of CRC were neutrophil-lymphocyte ratio(NLR),platelet-lymphocyte ratio(PLR),systemic immune-inflammation index(SII),and carcinoembryonic antigen(CEA)levels.NLR was correlated with PLR and SII(r=0.604,0.925,and 0.305,respectively),while PLR was correlated with SII(r=0.787).The nomogram prediction model demonstrated an area under the curve of 0.968[95%confidence interval(CI):0.948-0.988]in the training set(n=60)and 0.926(95%CI:0.906-0.980)in the validation set(n=20).The average absolute errors of the calibration curves for the training and validation sets were 0.032 and 0.048,respectively,indicating a good model fit.The decision curve analysis curves demonstrated high net income above the 5%threshold,indicating the clinical practicality of the model.CONCLUSION The nomogram model constructed using NLR,PLR,SII,and CEA levels had good accuracy and reliability in predicting IAI after radical resection of CRC,potentially aiding clinical treatment decision-making.
文摘Background:High blood pressure(BP)is a major contributor to mortality and cardiovascular diseases.Despite the known benefits of exercise for reducing BP,it is crucial to identify the most effective physical activity(PA)intervention.This systematic review and network meta-analysis(NMA)aimed to evaluate the available evidence on the effectiveness of various PA interventions for reducing BP and to determine their hierarchy based on their impact on BP.Methods:A search of PubMed,SPORTDiscus,PsycINFO,Web of Science,CINAHL,Cochrane,and Eric databases was conducted up to December 2022 for this systematic review and NMA.Randomized controlled trials and quasi-experimental studies targeting healthy children and adolescents aged 6-12 years old were included in this study.Only studies that compared controlled and intervention groups using PA or exercise as the major influence were included.We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines.Three independent investigators performed the literature screening,data extraction,and risk of bias assessment.We used Bayesian arm-based NMA to synthesize the data.The primary outcomes were systolic BP and diastolic BP.We calculated the mean differences(MDs)in systolic BP and diastolic BP before and after treatment.Mean treatment differences were estimated using NMA and random-effect models.Results:We synthesized 27 studies involving 15,220 children and adolescents.PA combined with nutrition and behavior change was the most effective intervention for reducing both systolic BP and diastolic BP(MD=-8.64,95%credible interval(95%CI):-11.44 to-5.84;MD=-6.75,95%CI:-10.44 to-3.11),followed by interventions with multiple components(MD=-1.39,95%CI:-1.94 to-0.84;MD=-2.54,95%CI:-4.89 to-0.29).Conclusion:Our findings suggest that PA interventions incorporating nutrition and behavior change,followed by interventions with multiple components,are most effective for reducing both systolic BP and diastolic BP in children and adolescents.
基金supported by the National Key R&D Program of China(Nos.2022YFA1503104 and 2022YFA1503102)the Natural Science Foundation of Shandong Province(No.2022HWYQ-009)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20230243)Taishan Scholars Project(No.tspd20230601)Qilu Young Scholars Program of Shandong University.
文摘The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving the NH_(3) selectivity is to facilitate adsorption and activation of NO_(2)^(−),which is generally undesirable in unitary species.In this work,an efficient NO_(2)^(−)RR catalyst is constructed by cooperating Pd with In2O3,in which NO_(2)^(−)could adsorb on interfacial dual-site through“Pd–N–O–In”linkage,leading to strengthened NO_(2)^(−)adsorption and easier N=O bond cleavage than that on unitary Pd or In2O3.Moreover,the Pd/In_(2)O_(3)composite exhibits moderate H^(*)adsorption,which may facilitate protonation kinetics while inhibiting competitive HER.As a result,it exhibits a fairly high NH_(3)yield rate of 622.76 mmol h^(−1)g^(−1)cat with a Faradaic efficiency(FE)of 95.72%,good selectivity of 91.96%,and cycling stability towards the NO_(2)^(−)RR,surpassing unitary In_(2)O_(3)and Pd/C electrocatalysts.Besides,computed results indicate that NH_(3)production on Pd/In_(2)O_(3)follows the deoxidation to hydrogenation pathway.This work highlights the significance of H^(*)and NO_(2)^(−)adsorption modulation and N=O activation in NO_(2)^(−)RR electrochemistry by creating synergy between a mediocre catalyst with an appropriate cooperator.
文摘Electrochemical nitrite reduction reaction(NO_(2)^(-)RR) is a potential sustainable route for regulating the nitrogen cycle and ambient ammonia(NH_(3)) synthesis.However,it remains a challenge to precisely regulate the reaction pathways and inhibit competing reactions(e.g.hydrogenolysis) for efficient and selective NH_(3) production in an aqueous solution environment.Here,we utilize the Schottky barrier-induced surface electric field to construct high-density electron-deficient Pd nanoparticles by modulating the N content in the carbon carrier to promote the enrichment and immobilization of NO_(2)^(-)on the electrode surface,which ensures the ultimate selectivity for NH_(3).With these properties,Pd@N_(0.14)C with the highest N content achieved excellent catalytic performance for the reduction of NO_(2)^(-)to NH_(3) with the 100% Faraday efficiency at-0.5 and-0.6 V vs,reversible hydrogen electrode(RHE) for NH_(3) production,which was significantly better than Pd/C and Pd@N_(x)C samples with lower N content.This study opens new avenues for rational construction of efficient electrocatalysts for nitrite removal and NH_(3) electrosynthesis.
基金Supported by the Natural Science Foundation of Shandong Province(No.ZR 2023 MD 059)the National Natural Science Foundation of China(No.41876135)。
文摘Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,which is vital to elucidate the underlying mechanism of ammonia nitrogen.In this study,clams R.philippinarum were exposed to ammonia nitrogen for 21 d at two environmentally relevant concentrations.The tandem mass tags approach(TMT)was applied to assay the differentially expressed proteins(DEPs)in clam gill tissues on the 3 rd and 21 st day.Finally,a total of 7263 proteins were identified.Bioinformatics analyses revealed that clam protein profiles changed in dose-and time dependent manner after ammonia nitrogen exposure.We inferred that the clams may face heavy challenges after ammonia exposure,such as unbalanced gender ratio,lysosomal disease,energy lack,neurological disorders,altered glutamine metabolism,increased lipid synthesis,and impaired immunity.Variation profiles of enzyme activities of glutaminase and glutamine synthase provided direct evidence to verify the related inference from proteome data.Most of the inferred toxic effects merit further study.This study identified important proteins related to ammonia nitrogen toxicity in the clam and indicated the severe stress of marine ammonia pollution on the healthy development of mollusc aquaculture.
基金the National Natural Science Foundation of China(project code:52202470)Jilin Province Natural Science Foundation(project codes:20220101205JC,20220101212JC)+2 种基金Jilin Province Specific Project of Industrial Technology Research&Development(project code:2020C025-2)2021 Interdisciplinary Integration and Innovation Project of Jilin University(project code:XJRCYB07)Free Exploration Project of Changsha Automotive Innovation Research Institute of Jilin University(project code:CAIRIZT20220202)。
文摘For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios.
基金Financial support from Ministerio de Ciencia e Innovación through projects PID2022-140143OB-I00(MCIN/AEI/10.13039/501100011033)and SO-CEX2019-000925-S(MCIN/AEI/10.13039/5011000110)supported by Marie Sk?odowska-Curie Actions Individual Fellowship grant funding to AMB,grant 101031365-SolTIMEthe support from the MSCA-COFUND I2:ICIQ Impulsion(GA 801474)。
文摘For carbon-free electrochemical fuel formation,the electrochemical cell must be powered by renewable energy.Obtaining solar-powered H_(2) fuel from water typically requires multiple photovoltaic cells and/or junctions to drive the water splitting reaction.Because of the lower thermodynamic requirements to oxidize ammonia compared to water,solar cells with smaller open circuit voltages can provide the required potential for ammonia splitting.In this work,a single perovskite solar cell with an open-circuit potential of 1.08 V is coupled to a 2-electrode electrochemical cell employing hybrid electroanodes functionalized with Ru-based molecular catalysts.The device is active for more than 30 min,producing N_(2) and H_(2) in a 1:2.9 ratio with 89%faradaic efficiency with no external applied bias.This work illustrates that hydrogen production from ammonia can be driven by conventional semiconductors.
基金The College Students’ Innovative Entrepreneurial Training Plan Program [202110594024]Science and Technology Plan Projects of Liuzhou [2022CAC0299]
文摘Thyroid nodules are a common clinical problem caused by various factors,including environmental and nutritional factors and genetic background.The environment can modulate and influence not only the risk of thyroid nodules but also the severity of disease in humans[1].The environment is awash with elements,and all mineral elements,including heavy metals and trace elements,are considered potentially toxic.A significantly higher incidence of thyroid cancer has been reported in populations exposed to low doses of metallic elements in volcanic areas over a long period[2].As research on thyroid disorders continues,it is becoming clear that abnormalities in trace elements in the body can affect the development of thyroid-related disorders.
基金National Natural Science Foundation of China(52076110,52106160)Jiangsu Provincial Natural Science Foundation of China(BK20200490,BK20220955)Fundamental Research Funds for the Central Universities(30923010208 and 30920031103).
文摘This study aimed to investigate the effects of ammonia addition on ethylene counter-flow diffusion flames with different diluents on the fuel or oxidizer side,using kinetic analyses.A special emphasis was put on assessing the coupled chemical effects of NH_(3) and CO_(2) on C2H4 combustion chemistry.The chemical effects could be evaluated by comparing fictitious inert NH_(3) or CO_(2) with normal active NH_(3) or CO_(2).The results revealed that the addition of NH_(3) decreased the mole fractions and production rates of key soot precursors,such as acetylene,propynyl,and benzene.When CO_(2) was used as the dilution gas,the coupled chemical effects of NH_(3) and CO_(2) were affected by the chemical effects of CO_(2) to varying degrees.With the oxidizer-side CO_(2) addition,the coupled chemical effects of NH_(3) and CO_(2) reduced the mole fractions of H,O,OH radicals,acetylene,propynyl,and benzene,while the effects differed from the fuel-side CO_(2) addition.The coupled chemical effects of NH_(3) and CO_(2) also promoted the formation of aldehyde contaminants,such as acetaldehyde,to some extent,particularly with CO_(2) addition on the oxidizer side.
基金supported by the National Natural Science Foundation of China[grant nos.82073646,82273707 and 82373675]the Guangdong Basic and Applied Basic Research Foundation[grant nos.2022A1515010503 and 2024A1515010972]the Shenzhen Science and Technology Program[grant nos.JCYJ20220818095818040,JCYJ20230807142801003].
文摘Cardiovascular disease(CVD)is the leading cause of death worldwide[1].Arterial sclerosis(AS)and hypertension are the main risk factors and pathological bases of CVD.Higher pulse wave velocity(PWV)measurements could reflect early progression of atherosclerosis.Based on the structure-function properties of the vascular wall and hemodynamics,strong evidence suggests that any increase in blood pressure levels can mechanically impair the ability of the endothelium to maintain vascular homeostasis[2].High levels of blood pressure parameters,such as systolic blood pressure(SBP),diastolic blood pressure(DBP),pulse pressure(PP),and mean arterial pressure(MAP)have been identified as essential risk biomarkers for atherosclerosis.
基金supported by the National Natural Science Foundation of China[82073593]the Scientific Research Projects in Colleges and Universities of Anhui Education Department[KJ2019A0281 and KJ2020A0666]+2 种基金Domestic Visiting and Training Project for Excellent Young Key Teachers of Colleges and Universities[gxgnfx2020115]Research level improvement program of Anhui Medical University[2021xkjT010]2022 Early Exposure to Research Training Program for Clinical Medicine(“5+3”Integration)Students(2022-ZQKY-84)。
文摘Di(2-ethylhexyl)phthalate(DEHP)is a widely used plasticizer known for its reproductive developmental and immune system toxicity,mainly through esophagal,dermal,and respiratory exposure^([1-3]).Maternal exposure to DEHP during pregnancy can lead to adverse birth outcomes in offspring,including impacts on the thyroid system of adolescent offspring^([2-4]).
文摘Introduction: One of the most frequent observations in long-term blood donation is chronic iron deficiency, which can develop into anaemia. The majority of blood screening methods employed by blood banks do not incorporate iron-status markers, which may result in potential subclinical iron deficiency. The aim of this study was to evaluate the effects of repeated blood donation on the levels of iron in the body and to guide blood donors in preventing the depletion of iron stores. Methods: Regular blood donors were categorised into distinct groups according to the number of donations they gave, and then the correlation between these groups and their bodies’ iron levels was examined. Different parameters were employed to identify iron deficiency and iron depletion in blood donors: serum ferritin, mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), total iron-binding capacity (TIBC), and serum iron. Results: The study included 300 individuals who regularly and willingly donated blood. There were no iron insufficiency cases among those donating blood for the first time (Group I). However, 15.5% of individuals who had donated once before (Group II) had ferritin levels of 15 - 30 μg/dl (ng/ml), indicating reduced iron stores. The rate increased to 18% (37 out of 206 individuals) among regular blood donors (Groups III, IV, and V). Iron deficiency (depletion) prevalence among regular blood donors in Groups III, IV, and V was 5.9% (12 out of 206) and 50.4% (100 out of 206). Donors who had donated blood most frequently had the lowest levels of haematological markers MCH, MCHC, and TIBC. Provide the p-values representing the differences between the means of MCV, MCH, iron, TIBC, and ferritin levels when comparing donor groups with the control group (Group I) based on the frequency of donations. Indicate statistically significant differences where the p-value is less than 0.0125. This significance level is adjusted based on the Bonferroni method, considering multiple independent tests. The result shows that the Iron parameter for the comparison between Group I and Group III and Group I and Group IV suggests a statistically significant difference in iron levels between these donor groups. Conclusion: The findings of this study show that a higher times of donations lads to a higher occurrence of depleted iron stores and subsequent erythropoiesis with iron deficiency by one donor from every three healthy donors. The iron and ferritin concentrations were within the normal range in group one (Control group) and reduced in the other four groups (G-2 to G-5). However, the level of haemoglobin remained within an acceptable range for blood donation. This outcome suggests that it may be necessary to reassess the criteria for accepting blood donors. The average serum ferritin levels were examined in all five groups (G-1 to G-5), both for males and females, and significant variations were seen among the groups under study. This study found that 35% of the individuals who regularly donate blood have iron-deficient anaemia (sideropenia). This suggests that it would be beneficial to test for serum ferritin at an earlier stage, ideally after three donations.
文摘Introduction:Fluid and positron emission tomography(PET)biomarkers that enable the detection of the hallmark proteins of Alzheimer’s disease(AD)(amyloid and tau)have revolutionized our approach to the diagnosis of AD.The evolution of AD diagnostic criteria to include biological characterization(Alzheimer’s Association Working Group,2023)provides an appropriate framework to reduce levels of clinico-pathologic mismatch and improve in-vivo diagnostic accuracy.As the therapeutic landscape for neurodegenerative disease evolves,it is increasingly incumbent on clinicians to provide timely,and pathologically precise diagnoses for patients.However,the expensive and invasive nature of these tests limits their scalability.
基金supported by Fondo per la Ricerco di Ateneo (FAR) 2022,University of Ferrara,Ferrara,Italy (to BP)
文摘Background:Development and homeostasis of the brain are enabled through the precise control of the cell microenvironment by the blood-brain barrier(BBB),which interfaces between the brain parenchyma and the lumen of blood microvessels,and by the blood-cerebrospinal fluid barrier,which separates the cerebrospinal fluid from the blood vessels of the choroid plexus(Villabona-Rueda et al.,2019).Here,the focus will be on the BBB,the impairment of which is considered the earliest common denominator in neurovascular diseases.