Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain uncle...Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms(NH_(4)NO_(3), NH_4Cl, and KNO_(3)) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive indica rice accessions. The results indicated that the Cd tolerance of N-sensitive indica accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive indica accessions decreased with an appropriate supply of NH_(4)NO_(3) and NH_4Cl, whereas they were comparable or slightly increased with increased KNO_(3). Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH_(4)NO_(3) and NH_4Cl also inhibited the instantaneous root Cd^(2+) uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH_(4)NO_(3) and NH_4Cl, is likely achieved by reducing the transcription of OsNRAMP1 and OsIRT1. In summary, our findings reveal that an appropriate supply of NH_(4)NO_(3) and NH_4Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production.展开更多
Based on the dynamic method,a quaternary system of ammonium polyphosphate (APP)-urea ammonium nitrate (UAN,CO(NH_(2))_(2)-NH_(4)NO_(3))-potassium chloride (KCl)-H_(2)O and its subsystems (APP-[CO(NH_(2))_(2)-NH_(4)NO_...Based on the dynamic method,a quaternary system of ammonium polyphosphate (APP)-urea ammonium nitrate (UAN,CO(NH_(2))_(2)-NH_(4)NO_(3))-potassium chloride (KCl)-H_(2)O and its subsystems (APP-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O,KCl-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O and APP-KCl-H_(2)O) were systematically investigated at the temperature of 273.2 K.Each ternary phase diagram contains one invariant point and three crystallization regions.The crystallization regions are:(1)(NH_(4))_(3)HP_(2)O_(7),(NH_(4))_(4)P_(2)O_(7)and ((NH_(4))_(3)HP_(2)O_(7)+(NH_(4))_(4)P_(2)O_(7)) for APP-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O diagram;(2) KCl,KNO_(3)and(KCl+KNO_(3)) for KCl-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O diagram and (3)(NH_(4))_(3)HP_(2)O_(7),KCl and((NH_(4))_(3)HP_(2)O_(7)+KCl) for APP-KCl-H_(2)O diagram.The quaternary phase diagram of APP-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-KCl-H_(2)O has no quaternary invariant point but includes four solid phase crystallization regions,i.e.,(NH_(4))_(3)HP_(2)O_(7),(NH_(4))_(4)P_(2)O_(7),KNO_(3)and KCl,in which the KNO_(3)region occupies the largest area.The maximum total nutrient content (N+P_(2)O_(5)+K_(2)O) existing as ionic forms in the APP-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O,KCl-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O,APP-KCl-H_(2)O and quaternary systems is 44.70%,32.86%,45.56%and 46.23%(mass),respectively,indicating that the maximum nutrient content can be reached using raw materials of the corresponding systems to prepare liquid fertilizer.In the quaternary system,the content of NH_(4)~+-N ascends with the increase of the total nutrient content,while the contents of NO_(3)^(-)-N and CO(NH_(2))_(2)-N increase with elevated total N.This work can help optimize the operating parameters for the production,storage and transportation of liquid fertilizers.展开更多
2,4,5-Triarylimidazoles could be obtained in excellent yields by the one-pot three-component condensation of benzil/benzoin, aldehydes and ammonium acetate in the presence of catalytic amount of the inexpensive, readi...2,4,5-Triarylimidazoles could be obtained in excellent yields by the one-pot three-component condensation of benzil/benzoin, aldehydes and ammonium acetate in the presence of catalytic amount of the inexpensive, readily available and non-toxic ceric (IV) ammonium nitrate (CAN) in aqueous media under ultrasound at room temperature. In this reaction the products were obtained in short reaction time and easy operation under mild conditions.展开更多
Three paddy soils were examined for their capacities of dissimilatory reduction of nitrate to ammonium (DRNA). 15 N labelled KNO 3 was added at the rate of 100 mg N kg -1 . Either glucose or rice straw ...Three paddy soils were examined for their capacities of dissimilatory reduction of nitrate to ammonium (DRNA). 15 N labelled KNO 3 was added at the rate of 100 mg N kg -1 . Either glucose or rice straw powder was incorporated at the rate of 1.0 or 2.0 mg C kg -1 respectively. Three treatments were designed to keep the soil saturated with water: A) a 2 cm water layer on soil surface (with beaker mouth open); B) a 2 cm water layer and a 1 cm liquid paraffin layer (with beaker mouth open); and C) water saturated under O 2 free Ar atmosphere. The soils were incubated at 28 oC for 5 days. There was almost no 15 N labelled NH + 4 N detected in Treatment A. However, there was 1.4 to 3.4 mg N kg -1 15 N labelled NH + 4 N in Treatment B and 2.1 to 13.8 mg N kg -1 in Treatment C. Glucose was more effective than straw powder in ammonium production. Because there was sufficient amount of non labelled NH + 4 N in the original soils, 15 N labelled NH + 4 N produced as such should be the result of dissimilatory reduction. Studies on microbial population showed that there were plenty of bacteria responsible for DRNA process (DRNA bacteria) in the soils examined, indicating that number of DRNA bacteria was not a limiting factor for ammonium production. However, DRNA bacteria were inferior in number to denitrifiers. DRNA process in soil suspension seemed to start after 5 days of incubation. Glycerol and sodium succinate, though both are readily available carbon sources to organisms,did not facilitate DRNA process. DRNA occurred only when glucose was available and at the C/NO 3 - N ratio of over 12. It seemed that both availability and quality of the carbon sources affected DRNA.展开更多
Denitrification and nitrate reduction to ammonium in Taihu Lake and Yellow Sea inter-tidal marinesediments were studied. The sediment samples were made into slurry containing 150 g dry matter per liter.Various amounts...Denitrification and nitrate reduction to ammonium in Taihu Lake and Yellow Sea inter-tidal marinesediments were studied. The sediment samples were made into slurry containing 150 g dry matter per liter.Various amounts of glucose and 5 mmol L-1 of potassium nitrate were added in order to achieve differentratios of glucose-C to nitrate-N. Acetylene inhibition technique was applied to measure denitrification in theslumes. All samples were incubated anaerobically under argon atmosphere. Data showed that Taihu Lakesediment produced more N2O than marine sediment. Denitrification potential was higher in Taihu Lakesediment than in marne one. Glucose added increased denitrification activity but not the denitrification po-tential of the sediments. Dissimilatory nitrate reduction to ammonium seemed to occur in marine sediment,but not in freshwater one. When the marine sediment was treated with 25 mmol L-1 glucose, its denitrification poteatial, as indicated by maximum N2O production by acetylene blockage, was lower than that treatedwith no or 2.5 mmol L-l glucose. Acetylene was suspected to have inhibitory effect on dissimilatory nitratereduction to ammonium.展开更多
The case study is about obtaining the flow rate and saturation temperature of steam that makes it possible to heat a solution of water and ammonia nitrate (<i>ANSOL</i>) in a shell and helical coil tube he...The case study is about obtaining the flow rate and saturation temperature of steam that makes it possible to heat a solution of water and ammonia nitrate (<i>ANSOL</i>) in a shell and helical coil tube heat exchanger, within a time interval, without that the crystallization of the <i>ANSOL</i> solution occurs. The desired production per batch of the solution is 5750 kg in 80 minutes. The analysis uses the concepts of efficiency and effectiveness to determine the heat transfer rate and temperature profiles that satisfy the imposed condition within a certain degree of safety and with the lowest possible cost in steam generation. Intermediate quantities necessary to reach the objective are the Reynolds number, Nusselt number, and global heat transfer coefficient for the shell and helical coil tube heat exchanger. Initially, the water is heated for a specified period and, subsequently, the ammonium nitrate is added to a given flow in a fixed mass flow rate.展开更多
Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two question...Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant.展开更多
To improve the performance of solid composite propellants(SCPs)supplemented with ammonium nitrate(AN)as an oxidizer,the incorporation of energetic ingredients such as explosives,energetic binders or catalysts is a com...To improve the performance of solid composite propellants(SCPs)supplemented with ammonium nitrate(AN)as an oxidizer,the incorporation of energetic ingredients such as explosives,energetic binders or catalysts is a common effective approach.For this purpose,polyurethane(PU),a typical inert binder,was mixed with nitrocellulose(NC)as an energetic polymer.Numerous composite solid propellant compositions based on AN and NC-modified polyurethane binder with different NC ratios were prepared.The prepared formulations were characterized using Fourier transform infrared spectroscopy(FTIR),RAMAN spectroscopy,X-ray diffraction(XRD),electron densimetry,thermogravimetric(TG)analysis,and differential scanning calorimetry(DSC).A kinetic study was then performed using the iterative KissingerAkahira-Sunose(It-KAS),Flynn-Wall-Ozawa(It-FWO),and non-linear Vyazovkin integral with compensation effect(VYA/CE)methods.The theoretical performances,such as theoretical specific impulse,adiabatic flame temperature,and ideal exhaust gaseous species,were also determined using the NASA Lewis Code,Chemical Equilibrium with Application(CEA).Spectroscopic examinations revealed the existence of NC and full polymerization of PU in the prepared propellants.According to density tests,the density of the propellant increases as the nitrocellulose component increases.According to the thermal analysis and kinetics study,the increase in NC content catalyzed the thermal decomposition of the AN-based composite solid propellants.Based on the theoretical study,increasing the amount of NC in the propellant increased the specific impulse and,as a result,the overall performance.展开更多
The atmospheric nitric acid, ammonia and ammonium nitrate aerosol were determined simultaneously in a Beijing site to test the equilibrium prediction. Rather good agreement between measurements and theory was found at...The atmospheric nitric acid, ammonia and ammonium nitrate aerosol were determined simultaneously in a Beijing site to test the equilibrium prediction. Rather good agreement between measurements and theory was found at ambient temperature above 9℃ at relative humidity below 70%. Below 9 ℃ the kinetic constraints preventing rapid attainment equilibrium were observed. A procedure for calculation of dependence of NH_4NO_3 aerosol dissociation constants on temperature and relative humidity was given. The seasonal variation of concentrations of NH_3, total NH_4^+ and HNO_3 was observed. The seasonal variation of concentrations of HNO_3 was caused by dissociation of NH_4NO_3 aerosol. The concentrations of NH_3 were 1-2 order higher than those of HNO_3. For formation of NH_4NO_3 aerosol the HNO_3 was the control reagent. Any increase of HNO_3 formed from NO_x would react with NH_3 to form NH4NO_3 aerosol in Beijing area except for someday in summer time.展开更多
Regio and stereoselective synthesis of substituted dihydrofurans were accomplished by eeric ammonium nitrate mediated oxidative cycloaddition of 1,3-dicarbonyls to β-aryl-α,β-unsaturated ketones in moderate yields.
A numerical simulation model has been developed to investigate the diffusion and reaction in diffusion denuder for reactive gases and aerosols. The analytical equation for equilibrium and kinetic equations of NH 4NO ...A numerical simulation model has been developed to investigate the diffusion and reaction in diffusion denuder for reactive gases and aerosols. The analytical equation for equilibrium and kinetic equations of NH 4NO 3, NH 3 and HNO 3 system were presented. The model results of sampling efficiencies were agree with those calculated by Gormley Kennedy equation and other models. The evaporation of NH 4NO 3 aerosol has a kinetic constraint. The kinetic constant can be estimated from evaporation data. The model results showed that an annular denuder can separate reactive gases and aerosols.展开更多
A new method for the cleavage of carbohydrate benzylidene acetal has been developed using Ceric (YV) ammonium nitrate (CAN) [(NH4)2Ce(NO3)6] in CH3CN-H2O (10/1, v/v).
The explosivity experiment of anti-explosive ammonium nitrate (AEAN) shows that the explosive characteristic of AEAN is eliminated. The adiabatic decompositions of ammonium nitrate and AEAN were investigated with an a...The explosivity experiment of anti-explosive ammonium nitrate (AEAN) shows that the explosive characteristic of AEAN is eliminated. The adiabatic decompositions of ammonium nitrate and AEAN were investigated with an accelerating rate calorimeter (ARC). The curves of thermal decomposition temperature and pressure versus time, self-heating rate and pressure versus temperature for two systems were obtained. The kinetic parameters such as apparent activation energy and pre-exponential factor were calculated. The safety of AEAN was analyzed. It was indicated that AEAN has a higher thermal stability than AN. At the same time, it can be shown that the elimination of its explosive characteristic is due to the improvement on the thermal stability of AEAN.展开更多
High levels of fine particulate matter(PM_(2.5))is linked to poor air quality and premature deaths,so haze pollution deserves the attention of the world.As abundant inorganic components in PM_(2.5),ammonium nitrate(NH...High levels of fine particulate matter(PM_(2.5))is linked to poor air quality and premature deaths,so haze pollution deserves the attention of the world.As abundant inorganic components in PM_(2.5),ammonium nitrate(NH_(4)NO_(3))formation includes two processes,the diffusion process(molecule of ammonia and nitric acid move from gas phase to liquid phase)and the ionization process(subsequent dissociation to form ions).In this study,we discuss the impact of meteorological factors,emission sources,and gaseous precursors on NH4NO3 formation based on thermodynamic theory,and identify the dominant factors during clean periods and haze periods.Results show that aerosol liquid water content has a more significant effect on ammonium nitrate formation regardless of the severity of pollution.The dust source is dominant emission source in clean periods;while a combination of coal combustion and vehicle exhaust sources is more important in haze periods.And the control of ammonia emission is more effective in reducing the formation of ammonium nitrate.The findings of this work inform the design of effective strategies to control particulate matter pollution.展开更多
With the strengthened controls on SO2 emissions and extensive increases in motor vehicles'exhaust,aerosol pollution shifts from sulfate-rich to nitrate-rich in recent years in Xi'an,China.To further gain insig...With the strengthened controls on SO2 emissions and extensive increases in motor vehicles'exhaust,aerosol pollution shifts from sulfate-rich to nitrate-rich in recent years in Xi'an,China.To further gain insights into the factors on nitrate formation and efficiently mitigate air pollution,highly time-resolved observations of water-soluble inorganic ions(WSIIs)in PM_(2.5) were measured in a suburban area of Xi'an,China during wintertime.Hourly concentration of total WSIIs is 39.8μg m-3 on average,accounting for 50.3%of PM_(2.5) mass.In contrast to a slight decrease in the mass fraction of SO_(4)^(2-),NO_(3)-shows a sig-nificant increase of the PM_(2.5) contribution with the aggravation of aerosol pollution.This suggests the importance of NO_(3)-formation to haze evolution.Furthermore,homogeneous reactions govern the formation of NO_(3)-,while alkali metals such as calcium and sodium play an additional role in retaining NO_(3)-in PM_(2.5) during clean periods.However,the heterogeneous hydrolysis reaction contributed more to NO_(3)-formation during the pollution periods under high relative humidity.Our investigation reveals that temperature,relative humidity,oxidant,and ammonia emissions facilitate rapid NO_(3)-formation.Using the random forest(RF)model,NO_(3)-concentrations were successfully simulated with measured variables for the training and testing datasets(R2>0.95).Among these variables,CO,NH_(3),and NO_(2) were found to be the main factors affecting the NO_(3)-concentrations.Compared with the period without vehicle re-striction,the contributions of NO_(3)-and NH4+to PM_(2.5) mass decreased by 5.3%and 3.4%in traffic re-striction periods,respectively.The vehicle restriction leads to the decreases of precursor gases of NO_(2),SO_(2),and NH_(3) by 12.8%,5.9%,and 27.6%,respectively.The results demonstrate collaborative emission reduction of NO_(x) and NH_(3) by vehicle restrictions,and using new energy vehicles(or electric vehicles)can effectively alleviate particulate matter pollution in northwest China.展开更多
In order to find out the detonation mechanism of intermolecular explosives (IMX), the EAR15 explosive is studied by the experiments and numerical modeling. The results show that EAR15 is a nonideal explosive, since in...In order to find out the detonation mechanism of intermolecular explosives (IMX), the EAR15 explosive is studied by the experiments and numerical modeling. The results show that EAR15 is a nonideal explosive, since in the detonation reaction zone both reacted and unreacted ammonium nitrate (AN) absorb the energy through the interface, resulting in the characteristic of nonideal detonation. In our tests, only 19%-49% active AN takes part in reaction, the rest behaves as the inert at the detonation wave front.展开更多
The behavior of herbicide acetochlor adsorption desorption to soil in the presence of humic acid (HA), anionic surfactant sodium dodecylbenzene sulfonate (SDBS), cationic surfactant hexadecyltrimethyl ammonium bromi...The behavior of herbicide acetochlor adsorption desorption to soil in the presence of humic acid (HA), anionic surfactant sodium dodecylbenzene sulfonate (SDBS), cationic surfactant hexadecyltrimethyl ammonium bromide (HDAB) and NH 4NO 3 as a chemical fertilizer was studied. Observed acetochlor adsorption isotherm were well described using Freundlich isotherm equation, from which the desorption isotherm equation has been deduced. The deduced equation can more directly describe acetochlor desorption process. The results showed that the enhance of acetochlor adsorption capacity by solid HA was greater than by soluble HA. The presence of NH 4NO 3 can slightly enhance acetochlor adsorption to soil by comparison with that measured in NH 4NO 3 free solution. In soil water system, surfactant acetochlor interaction is very complex, and the surfactant adsorptions as well as acetochlor adsorption need to be considered. When acetochlor soil suspensions contained lower concentration SDBS or HDAB (40 mg/L), K f for acetochlor adsorption was decreased in comparison to that measured in SDBS or HDAB free solution. When acetochlor soil suspensions contained higher concentration SDBS or HDAB (corresponding 1400 mg/L or 200 mg/L), K f for acetochlor adsorption was increased in comparison to that measured in SDBS or HDAB free solution.展开更多
A variety of aromatic, aliphatic and conjugated aldehydes and alcohols were transformed to the corresponding carboxylic acids and ketones with a quantitative conversion in high yields with 70% t-BuOOH solution in wate...A variety of aromatic, aliphatic and conjugated aldehydes and alcohols were transformed to the corresponding carboxylic acids and ketones with a quantitative conversion in high yields with 70% t-BuOOH solution in water in the presence of catalytic amounts of ceric ammonium nitrate [Ce(NH4)2(NO3)6] (CAN) under room temperature conditions. The scope of our catalytic system is applicable for a wide range of aromatic, conjugated and aliphatic substrates. These aldehydes were converted to the corresponding carboxylic acids in good isolated yields in reason- able times. This method possesses a wide range of capabilities since it can be used with other functional groups which may not tolerate oxidative conditions, involves fairly simple method for work-up, exhibits chemoselectivity and proceeds under ambient conditions. The resulting products are obtained in good yields within reasonable time.展开更多
Specific management of water regimes, soil and N in China might play an important role in regulating N2O and CH4 emissions in rice fields. Nitrous oxide and methane emissions from alternate non-flooded/flooded paddies...Specific management of water regimes, soil and N in China might play an important role in regulating N2O and CH4 emissions in rice fields. Nitrous oxide and methane emissions from alternate non-flooded/flooded paddies were monitored simultaneously during a 516-day incubation with lysimeter experiments. Two N sources (15N-(NH4)2SO4 and 15N-labeled milk vetch) were applied to two contrasting paddies: one derived from Xiashu loess (Loess) and one from Quaternary red clay (Clay). Both N2O and CH4 emissions were significantly higher in soil Clay than in soil Loess during the flooded period. For both soil, N2O emissions peaked at the transition periods shortly after the beginning of the flooded and non-flooded seasons. Soil type affected N2O emission patterns. In soil Clay, the emission peak during the transition period from non-flooded to flooded conditions was much higher than the peak during the transition period from flooded to non-flooded conditions. In soil Loess, the emission peak during the transition period from flooded to non-flooded conditions was obviously higher than the peak during the transition period from non-flooded to flooded conditions except for milk vetch treatment. Soil type also had a significant effect on CH4 emissions during the flooded season, over which the weighted average flux was 111 mg C m-2 h-1 and 2.2 mg C m-2 h-1 from Clay and Loess, respectively. Results indicated that it was the transition in the water regime that dominated N2O emissions while it was the soil type that dominated CH4 emissions during the flooded season. Anaerobic oxidation of methane possibly existed in soil Loess during the flooded season.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.31971872)the Open Research Fund of State Key Laboratory of Hybrid Rice, China (Grant No.2022KF02)+3 种基金the National Natural Science Foundation of China (Grant Nos.32101755 and 32188102)the Zhejiang Provincial Natural Science Foundation, China (Grant No.LY22C130005)the Key Research and Development Program of Zhejiang Province, China (Grant No.2021C02056)the ‘Pioneer’ and ‘Leading Goose’ R&D Program of Zhejiang, China (Grant No.2023C02014)。
文摘Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms(NH_(4)NO_(3), NH_4Cl, and KNO_(3)) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive indica rice accessions. The results indicated that the Cd tolerance of N-sensitive indica accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive indica accessions decreased with an appropriate supply of NH_(4)NO_(3) and NH_4Cl, whereas they were comparable or slightly increased with increased KNO_(3). Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH_(4)NO_(3) and NH_4Cl also inhibited the instantaneous root Cd^(2+) uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH_(4)NO_(3) and NH_4Cl, is likely achieved by reducing the transcription of OsNRAMP1 and OsIRT1. In summary, our findings reveal that an appropriate supply of NH_(4)NO_(3) and NH_4Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production.
基金fund supported by the National Natural Science Foundation of China (32172677)。
文摘Based on the dynamic method,a quaternary system of ammonium polyphosphate (APP)-urea ammonium nitrate (UAN,CO(NH_(2))_(2)-NH_(4)NO_(3))-potassium chloride (KCl)-H_(2)O and its subsystems (APP-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O,KCl-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O and APP-KCl-H_(2)O) were systematically investigated at the temperature of 273.2 K.Each ternary phase diagram contains one invariant point and three crystallization regions.The crystallization regions are:(1)(NH_(4))_(3)HP_(2)O_(7),(NH_(4))_(4)P_(2)O_(7)and ((NH_(4))_(3)HP_(2)O_(7)+(NH_(4))_(4)P_(2)O_(7)) for APP-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O diagram;(2) KCl,KNO_(3)and(KCl+KNO_(3)) for KCl-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O diagram and (3)(NH_(4))_(3)HP_(2)O_(7),KCl and((NH_(4))_(3)HP_(2)O_(7)+KCl) for APP-KCl-H_(2)O diagram.The quaternary phase diagram of APP-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-KCl-H_(2)O has no quaternary invariant point but includes four solid phase crystallization regions,i.e.,(NH_(4))_(3)HP_(2)O_(7),(NH_(4))_(4)P_(2)O_(7),KNO_(3)and KCl,in which the KNO_(3)region occupies the largest area.The maximum total nutrient content (N+P_(2)O_(5)+K_(2)O) existing as ionic forms in the APP-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O,KCl-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O,APP-KCl-H_(2)O and quaternary systems is 44.70%,32.86%,45.56%and 46.23%(mass),respectively,indicating that the maximum nutrient content can be reached using raw materials of the corresponding systems to prepare liquid fertilizer.In the quaternary system,the content of NH_(4)~+-N ascends with the increase of the total nutrient content,while the contents of NO_(3)^(-)-N and CO(NH_(2))_(2)-N increase with elevated total N.This work can help optimize the operating parameters for the production,storage and transportation of liquid fertilizers.
文摘2,4,5-Triarylimidazoles could be obtained in excellent yields by the one-pot three-component condensation of benzil/benzoin, aldehydes and ammonium acetate in the presence of catalytic amount of the inexpensive, readily available and non-toxic ceric (IV) ammonium nitrate (CAN) in aqueous media under ultrasound at room temperature. In this reaction the products were obtained in short reaction time and easy operation under mild conditions.
文摘Three paddy soils were examined for their capacities of dissimilatory reduction of nitrate to ammonium (DRNA). 15 N labelled KNO 3 was added at the rate of 100 mg N kg -1 . Either glucose or rice straw powder was incorporated at the rate of 1.0 or 2.0 mg C kg -1 respectively. Three treatments were designed to keep the soil saturated with water: A) a 2 cm water layer on soil surface (with beaker mouth open); B) a 2 cm water layer and a 1 cm liquid paraffin layer (with beaker mouth open); and C) water saturated under O 2 free Ar atmosphere. The soils were incubated at 28 oC for 5 days. There was almost no 15 N labelled NH + 4 N detected in Treatment A. However, there was 1.4 to 3.4 mg N kg -1 15 N labelled NH + 4 N in Treatment B and 2.1 to 13.8 mg N kg -1 in Treatment C. Glucose was more effective than straw powder in ammonium production. Because there was sufficient amount of non labelled NH + 4 N in the original soils, 15 N labelled NH + 4 N produced as such should be the result of dissimilatory reduction. Studies on microbial population showed that there were plenty of bacteria responsible for DRNA process (DRNA bacteria) in the soils examined, indicating that number of DRNA bacteria was not a limiting factor for ammonium production. However, DRNA bacteria were inferior in number to denitrifiers. DRNA process in soil suspension seemed to start after 5 days of incubation. Glycerol and sodium succinate, though both are readily available carbon sources to organisms,did not facilitate DRNA process. DRNA occurred only when glucose was available and at the C/NO 3 - N ratio of over 12. It seemed that both availability and quality of the carbon sources affected DRNA.
文摘Denitrification and nitrate reduction to ammonium in Taihu Lake and Yellow Sea inter-tidal marinesediments were studied. The sediment samples were made into slurry containing 150 g dry matter per liter.Various amounts of glucose and 5 mmol L-1 of potassium nitrate were added in order to achieve differentratios of glucose-C to nitrate-N. Acetylene inhibition technique was applied to measure denitrification in theslumes. All samples were incubated anaerobically under argon atmosphere. Data showed that Taihu Lakesediment produced more N2O than marine sediment. Denitrification potential was higher in Taihu Lakesediment than in marne one. Glucose added increased denitrification activity but not the denitrification po-tential of the sediments. Dissimilatory nitrate reduction to ammonium seemed to occur in marine sediment,but not in freshwater one. When the marine sediment was treated with 25 mmol L-1 glucose, its denitrification poteatial, as indicated by maximum N2O production by acetylene blockage, was lower than that treatedwith no or 2.5 mmol L-l glucose. Acetylene was suspected to have inhibitory effect on dissimilatory nitratereduction to ammonium.
文摘The case study is about obtaining the flow rate and saturation temperature of steam that makes it possible to heat a solution of water and ammonia nitrate (<i>ANSOL</i>) in a shell and helical coil tube heat exchanger, within a time interval, without that the crystallization of the <i>ANSOL</i> solution occurs. The desired production per batch of the solution is 5750 kg in 80 minutes. The analysis uses the concepts of efficiency and effectiveness to determine the heat transfer rate and temperature profiles that satisfy the imposed condition within a certain degree of safety and with the lowest possible cost in steam generation. Intermediate quantities necessary to reach the objective are the Reynolds number, Nusselt number, and global heat transfer coefficient for the shell and helical coil tube heat exchanger. Initially, the water is heated for a specified period and, subsequently, the ammonium nitrate is added to a given flow in a fixed mass flow rate.
基金supported in part by the National Basic Research Program of China (2009CB421303)supported by National Natural Science Foundation of China (30970546)
文摘Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant.
文摘To improve the performance of solid composite propellants(SCPs)supplemented with ammonium nitrate(AN)as an oxidizer,the incorporation of energetic ingredients such as explosives,energetic binders or catalysts is a common effective approach.For this purpose,polyurethane(PU),a typical inert binder,was mixed with nitrocellulose(NC)as an energetic polymer.Numerous composite solid propellant compositions based on AN and NC-modified polyurethane binder with different NC ratios were prepared.The prepared formulations were characterized using Fourier transform infrared spectroscopy(FTIR),RAMAN spectroscopy,X-ray diffraction(XRD),electron densimetry,thermogravimetric(TG)analysis,and differential scanning calorimetry(DSC).A kinetic study was then performed using the iterative KissingerAkahira-Sunose(It-KAS),Flynn-Wall-Ozawa(It-FWO),and non-linear Vyazovkin integral with compensation effect(VYA/CE)methods.The theoretical performances,such as theoretical specific impulse,adiabatic flame temperature,and ideal exhaust gaseous species,were also determined using the NASA Lewis Code,Chemical Equilibrium with Application(CEA).Spectroscopic examinations revealed the existence of NC and full polymerization of PU in the prepared propellants.According to density tests,the density of the propellant increases as the nitrocellulose component increases.According to the thermal analysis and kinetics study,the increase in NC content catalyzed the thermal decomposition of the AN-based composite solid propellants.Based on the theoretical study,increasing the amount of NC in the propellant increased the specific impulse and,as a result,the overall performance.
文摘The atmospheric nitric acid, ammonia and ammonium nitrate aerosol were determined simultaneously in a Beijing site to test the equilibrium prediction. Rather good agreement between measurements and theory was found at ambient temperature above 9℃ at relative humidity below 70%. Below 9 ℃ the kinetic constraints preventing rapid attainment equilibrium were observed. A procedure for calculation of dependence of NH_4NO_3 aerosol dissociation constants on temperature and relative humidity was given. The seasonal variation of concentrations of NH_3, total NH_4^+ and HNO_3 was observed. The seasonal variation of concentrations of HNO_3 was caused by dissociation of NH_4NO_3 aerosol. The concentrations of NH_3 were 1-2 order higher than those of HNO_3. For formation of NH_4NO_3 aerosol the HNO_3 was the control reagent. Any increase of HNO_3 formed from NO_x would react with NH_3 to form NH4NO_3 aerosol in Beijing area except for someday in summer time.
文摘Regio and stereoselective synthesis of substituted dihydrofurans were accomplished by eeric ammonium nitrate mediated oxidative cycloaddition of 1,3-dicarbonyls to β-aryl-α,β-unsaturated ketones in moderate yields.
文摘A numerical simulation model has been developed to investigate the diffusion and reaction in diffusion denuder for reactive gases and aerosols. The analytical equation for equilibrium and kinetic equations of NH 4NO 3, NH 3 and HNO 3 system were presented. The model results of sampling efficiencies were agree with those calculated by Gormley Kennedy equation and other models. The evaporation of NH 4NO 3 aerosol has a kinetic constraint. The kinetic constant can be estimated from evaporation data. The model results showed that an annular denuder can separate reactive gases and aerosols.
文摘A new method for the cleavage of carbohydrate benzylidene acetal has been developed using Ceric (YV) ammonium nitrate (CAN) [(NH4)2Ce(NO3)6] in CH3CN-H2O (10/1, v/v).
文摘The explosivity experiment of anti-explosive ammonium nitrate (AEAN) shows that the explosive characteristic of AEAN is eliminated. The adiabatic decompositions of ammonium nitrate and AEAN were investigated with an accelerating rate calorimeter (ARC). The curves of thermal decomposition temperature and pressure versus time, self-heating rate and pressure versus temperature for two systems were obtained. The kinetic parameters such as apparent activation energy and pre-exponential factor were calculated. The safety of AEAN was analyzed. It was indicated that AEAN has a higher thermal stability than AN. At the same time, it can be shown that the elimination of its explosive characteristic is due to the improvement on the thermal stability of AEAN.
基金the National Natural Science Foundation of China(No.42077191)the Fundamental Research Funds for the Central Universities(Nos.63213072,63213074)+1 种基金the GDAS’Project of Science and Technology Development(No.2021GDASYL-20210103058)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012165),The Blue Sky Foundation.
文摘High levels of fine particulate matter(PM_(2.5))is linked to poor air quality and premature deaths,so haze pollution deserves the attention of the world.As abundant inorganic components in PM_(2.5),ammonium nitrate(NH_(4)NO_(3))formation includes two processes,the diffusion process(molecule of ammonia and nitric acid move from gas phase to liquid phase)and the ionization process(subsequent dissociation to form ions).In this study,we discuss the impact of meteorological factors,emission sources,and gaseous precursors on NH4NO3 formation based on thermodynamic theory,and identify the dominant factors during clean periods and haze periods.Results show that aerosol liquid water content has a more significant effect on ammonium nitrate formation regardless of the severity of pollution.The dust source is dominant emission source in clean periods;while a combination of coal combustion and vehicle exhaust sources is more important in haze periods.And the control of ammonia emission is more effective in reducing the formation of ammonium nitrate.The findings of this work inform the design of effective strategies to control particulate matter pollution.
基金supported by the West Light Foundation of the Chinese Academy of Sciences (grant No.XAB2021YN05)the National Natural Science Foundation of China (grant No.41503123)the National Atmospheric Research Program (grant No.2017YFC0212200).
文摘With the strengthened controls on SO2 emissions and extensive increases in motor vehicles'exhaust,aerosol pollution shifts from sulfate-rich to nitrate-rich in recent years in Xi'an,China.To further gain insights into the factors on nitrate formation and efficiently mitigate air pollution,highly time-resolved observations of water-soluble inorganic ions(WSIIs)in PM_(2.5) were measured in a suburban area of Xi'an,China during wintertime.Hourly concentration of total WSIIs is 39.8μg m-3 on average,accounting for 50.3%of PM_(2.5) mass.In contrast to a slight decrease in the mass fraction of SO_(4)^(2-),NO_(3)-shows a sig-nificant increase of the PM_(2.5) contribution with the aggravation of aerosol pollution.This suggests the importance of NO_(3)-formation to haze evolution.Furthermore,homogeneous reactions govern the formation of NO_(3)-,while alkali metals such as calcium and sodium play an additional role in retaining NO_(3)-in PM_(2.5) during clean periods.However,the heterogeneous hydrolysis reaction contributed more to NO_(3)-formation during the pollution periods under high relative humidity.Our investigation reveals that temperature,relative humidity,oxidant,and ammonia emissions facilitate rapid NO_(3)-formation.Using the random forest(RF)model,NO_(3)-concentrations were successfully simulated with measured variables for the training and testing datasets(R2>0.95).Among these variables,CO,NH_(3),and NO_(2) were found to be the main factors affecting the NO_(3)-concentrations.Compared with the period without vehicle re-striction,the contributions of NO_(3)-and NH4+to PM_(2.5) mass decreased by 5.3%and 3.4%in traffic re-striction periods,respectively.The vehicle restriction leads to the decreases of precursor gases of NO_(2),SO_(2),and NH_(3) by 12.8%,5.9%,and 27.6%,respectively.The results demonstrate collaborative emission reduction of NO_(x) and NH_(3) by vehicle restrictions,and using new energy vehicles(or electric vehicles)can effectively alleviate particulate matter pollution in northwest China.
文摘In order to find out the detonation mechanism of intermolecular explosives (IMX), the EAR15 explosive is studied by the experiments and numerical modeling. The results show that EAR15 is a nonideal explosive, since in the detonation reaction zone both reacted and unreacted ammonium nitrate (AN) absorb the energy through the interface, resulting in the characteristic of nonideal detonation. In our tests, only 19%-49% active AN takes part in reaction, the rest behaves as the inert at the detonation wave front.
文摘The behavior of herbicide acetochlor adsorption desorption to soil in the presence of humic acid (HA), anionic surfactant sodium dodecylbenzene sulfonate (SDBS), cationic surfactant hexadecyltrimethyl ammonium bromide (HDAB) and NH 4NO 3 as a chemical fertilizer was studied. Observed acetochlor adsorption isotherm were well described using Freundlich isotherm equation, from which the desorption isotherm equation has been deduced. The deduced equation can more directly describe acetochlor desorption process. The results showed that the enhance of acetochlor adsorption capacity by solid HA was greater than by soluble HA. The presence of NH 4NO 3 can slightly enhance acetochlor adsorption to soil by comparison with that measured in NH 4NO 3 free solution. In soil water system, surfactant acetochlor interaction is very complex, and the surfactant adsorptions as well as acetochlor adsorption need to be considered. When acetochlor soil suspensions contained lower concentration SDBS or HDAB (40 mg/L), K f for acetochlor adsorption was decreased in comparison to that measured in SDBS or HDAB free solution. When acetochlor soil suspensions contained higher concentration SDBS or HDAB (corresponding 1400 mg/L or 200 mg/L), K f for acetochlor adsorption was increased in comparison to that measured in SDBS or HDAB free solution.
文摘A variety of aromatic, aliphatic and conjugated aldehydes and alcohols were transformed to the corresponding carboxylic acids and ketones with a quantitative conversion in high yields with 70% t-BuOOH solution in water in the presence of catalytic amounts of ceric ammonium nitrate [Ce(NH4)2(NO3)6] (CAN) under room temperature conditions. The scope of our catalytic system is applicable for a wide range of aromatic, conjugated and aliphatic substrates. These aldehydes were converted to the corresponding carboxylic acids in good isolated yields in reason- able times. This method possesses a wide range of capabilities since it can be used with other functional groups which may not tolerate oxidative conditions, involves fairly simple method for work-up, exhibits chemoselectivity and proceeds under ambient conditions. The resulting products are obtained in good yields within reasonable time.
基金Project supported by the National Natural Science Foundation of China (Nos. 30390080 and 30390081).
文摘Specific management of water regimes, soil and N in China might play an important role in regulating N2O and CH4 emissions in rice fields. Nitrous oxide and methane emissions from alternate non-flooded/flooded paddies were monitored simultaneously during a 516-day incubation with lysimeter experiments. Two N sources (15N-(NH4)2SO4 and 15N-labeled milk vetch) were applied to two contrasting paddies: one derived from Xiashu loess (Loess) and one from Quaternary red clay (Clay). Both N2O and CH4 emissions were significantly higher in soil Clay than in soil Loess during the flooded period. For both soil, N2O emissions peaked at the transition periods shortly after the beginning of the flooded and non-flooded seasons. Soil type affected N2O emission patterns. In soil Clay, the emission peak during the transition period from non-flooded to flooded conditions was much higher than the peak during the transition period from flooded to non-flooded conditions. In soil Loess, the emission peak during the transition period from flooded to non-flooded conditions was obviously higher than the peak during the transition period from non-flooded to flooded conditions except for milk vetch treatment. Soil type also had a significant effect on CH4 emissions during the flooded season, over which the weighted average flux was 111 mg C m-2 h-1 and 2.2 mg C m-2 h-1 from Clay and Loess, respectively. Results indicated that it was the transition in the water regime that dominated N2O emissions while it was the soil type that dominated CH4 emissions during the flooded season. Anaerobic oxidation of methane possibly existed in soil Loess during the flooded season.