[Objective] The aim was to study the properties of novel "light fertilizer", photo-conversion film, in order to evaluate its effect on the environmental factors and morphogenetic process of crops in the high tunnel....[Objective] The aim was to study the properties of novel "light fertilizer", photo-conversion film, in order to evaluate its effect on the environmental factors and morphogenetic process of crops in the high tunnel. [Method] Photo-conversion film and Iongevous anti-dropping film were compared in terms of light, air and soil temperature utilizing the Facilities of leafy agriculture high tunnel intelligent monitoring system. Verifying the results by farmland experiment. [Result] Photo- conversion film indeed improved the light quality of high tunnel compared with the Iongevous anti- dripping film. The air and soil temperature was raised several degrees. Results of farmland experiment show that the average value of brassica chinensis fresh weight increased 19.15% compared to the control. [Conclusion] Photo-conversion film promotes more crop growth than Iongevous anti-dropping film due to improvement of light quality, air and soil temperature.展开更多
基金Supported by Jiangsu Agricultural Science and Technology Self-Innovation Funds(CX(13)3032)Nanjing Leading Science and Technology Innovative Talents and Entrepreneurs(2012-NJ-321)+4 种基金Jiangsu"Six Businesses Talents Peak"Program(2012NY-031)Nanjing Innovation Fund for Technology Based Firms(2013/074)New & High Technology Industry Development Project of Institutions of Higher Education in Jiangsu Province(JHB05-21)Technology Supporting Program of Jiangsu Province-Agriculture(SBE2014327)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)~~
文摘[Objective] The aim was to study the properties of novel "light fertilizer", photo-conversion film, in order to evaluate its effect on the environmental factors and morphogenetic process of crops in the high tunnel. [Method] Photo-conversion film and Iongevous anti-dropping film were compared in terms of light, air and soil temperature utilizing the Facilities of leafy agriculture high tunnel intelligent monitoring system. Verifying the results by farmland experiment. [Result] Photo- conversion film indeed improved the light quality of high tunnel compared with the Iongevous anti- dripping film. The air and soil temperature was raised several degrees. Results of farmland experiment show that the average value of brassica chinensis fresh weight increased 19.15% compared to the control. [Conclusion] Photo-conversion film promotes more crop growth than Iongevous anti-dropping film due to improvement of light quality, air and soil temperature.