The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated...The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca^(2+)system,whereas arsenopyrite was almost unaffected.In mineral mixtures tests,the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%.After ammonium oxalate and ethyl xanthate treatment,the hydrophobicity of pyrite increased significantly,and the contact angle increased from 66.62°to 75.15°and then to 81.21°.After ammonium oxalate treatment,the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface.Zeta potential measurements showed that after activation by ammonium oxalate,there was a shift in the zeta potential of pyrite to more negative values by adding xanthate.X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment,the O 1s content on the surface of pyrite decreased from 44.03%to 26.18%,and the S 2p content increased from 14.01%to 27.26%,which confirmed that the ammonium oxalatetreated pyrite surface was more hydrophobic than the untreated surface.Therefore,ammonium oxalate may be used as a selective activator of pyrite in the lime system,which achieves an efficient flotation separation of S-As sulfide ores under high alkalinity and high Ca2+concentration conditions.展开更多
Ammonium oxalate treatment, previously extensively studied on limestone in the laboratory, was applied to powdering historical stonework (limestone) situated on the shoreline in the Mediterranean Island of Malta. Th...Ammonium oxalate treatment, previously extensively studied on limestone in the laboratory, was applied to powdering historical stonework (limestone) situated on the shoreline in the Mediterranean Island of Malta. This paper presents the results obtained from onsite testing that aimed at evaluating the treatment in terms of its aesthetic performance, the depth of treatment, the mechanical properties of the consolidated stone and the influence on water transport. To this end, the testing program included colorimetry, DRMS (drilling resistance measurement system) and water absorption through the contact sponge method. This study is Part One of the final phase of a wider research program which included two previous phases progressing from treating this same very porous stone type in a laboratory-based controlled environment to uncontrolled site conditions, seeking to quantify this treatment's effectiveness in the field. Results showed that onsite consolidation was achieved and that although some changes in colour and water absorption were brought about by the treatment, these were within acceptable tolerance limits. Besides carrying out these treatments and evaluations directly on the coast, this study anticipates further studies which will look at rural and urban sites where the types and concentrations of salts are expected to be different.展开更多
We developed a novel approach for the preparation of N-doped TiO2 photocatalysts by calcining ammonium titanium oxalate at different temperatures. The structures of N-TiO2 were characterized by powder X-ray diffractio...We developed a novel approach for the preparation of N-doped TiO2 photocatalysts by calcining ammonium titanium oxalate at different temperatures. The structures of N-TiO2 were characterized by powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, diffuse reflectance UV-Vis spectroscopy, and scanning electron microscope. The N-doped TiO2 photocatalysts calcined below 700 ℃ are the pure anatase phase but that calcined at 700 ℃ is a mixture of anatase and rutile phases. The doped N locates at the interstitial site of TiO2 which leads to the narrowing of bad gap of pure anatase N-TiO2. Among all photocatalysts, N-TiO2 photocatalysts calcined at 600 and 400 ℃ exhibit the best performance in the photodegradation of methyl orange under the UV light and all-wavelength light illuminations, respectively; however, because of the perfect crystallinity and the existence of anatase-rutile phase junctions, N-TiO2 photocatalyst calcined at 700 ℃ exhibits the highest specific photodegradation rate, i.e., the highest quantum yield, under both the UV light and all-wavelength light illuminations.展开更多
A new, simple and sensitive method was developed for the determination of silicon tetrahydride in the air of workplace in this study. The alkaline resin-based spherical activated carbon was used to collect sample of s...A new, simple and sensitive method was developed for the determination of silicon tetrahydride in the air of workplace in this study. The alkaline resin-based spherical activated carbon was used to collect sample of silicon tetrahydride at workplace. Silicon tetrahydride was then desorbed from active carbon in 100°C hot water. After reacting with ammonium molybdate, oxalic acid and 1,2,4-trichlorobenzene alpha-naphthol amino sulfonic acid under acid condition, silicon tetrahydride was transformed into silicon molybdenum blue. The absorbance of silicon molybdenum blue was quantitatively measured at the wavelength of 680 nm. The results showed that the average sampling efficiency and desorption efficiency were 97.53% and 94.94%, respectively by this method. Detection limits were 0.054 μg/m L for the spectrophotometric method and 0.14 mg/m3 for the determination of silicon tetrahydride in the air of workplace(sampling volume was 7.5 L). The conversion rate of silicon tetrahydride gradually decreased when storage time of samples was extended. The descent rate of sample was less than 10% when the sample was sealed for 7 days in the room temperature. It was concluded that this spectrophotometric method can be successfully used to determine silicon tetrahydride in the worksites.展开更多
基金supported by Yunnan Major Scientific and Technological Projects,China(No.202202AG050015)National Natural Science Foundation of China(No.51504109)。
文摘The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca^(2+)system,whereas arsenopyrite was almost unaffected.In mineral mixtures tests,the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%.After ammonium oxalate and ethyl xanthate treatment,the hydrophobicity of pyrite increased significantly,and the contact angle increased from 66.62°to 75.15°and then to 81.21°.After ammonium oxalate treatment,the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface.Zeta potential measurements showed that after activation by ammonium oxalate,there was a shift in the zeta potential of pyrite to more negative values by adding xanthate.X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment,the O 1s content on the surface of pyrite decreased from 44.03%to 26.18%,and the S 2p content increased from 14.01%to 27.26%,which confirmed that the ammonium oxalatetreated pyrite surface was more hydrophobic than the untreated surface.Therefore,ammonium oxalate may be used as a selective activator of pyrite in the lime system,which achieves an efficient flotation separation of S-As sulfide ores under high alkalinity and high Ca2+concentration conditions.
文摘Ammonium oxalate treatment, previously extensively studied on limestone in the laboratory, was applied to powdering historical stonework (limestone) situated on the shoreline in the Mediterranean Island of Malta. This paper presents the results obtained from onsite testing that aimed at evaluating the treatment in terms of its aesthetic performance, the depth of treatment, the mechanical properties of the consolidated stone and the influence on water transport. To this end, the testing program included colorimetry, DRMS (drilling resistance measurement system) and water absorption through the contact sponge method. This study is Part One of the final phase of a wider research program which included two previous phases progressing from treating this same very porous stone type in a laboratory-based controlled environment to uncontrolled site conditions, seeking to quantify this treatment's effectiveness in the field. Results showed that onsite consolidation was achieved and that although some changes in colour and water absorption were brought about by the treatment, these were within acceptable tolerance limits. Besides carrying out these treatments and evaluations directly on the coast, this study anticipates further studies which will look at rural and urban sites where the types and concentrations of salts are expected to be different.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20773113), the Solar Energy Project of Chinese Academy of Sciences, the Ministry of Education program for PCSIRT (No.IRT0756), and the Max Planck Gesellschaft of Chinese Academy of Sciences partner group.
文摘We developed a novel approach for the preparation of N-doped TiO2 photocatalysts by calcining ammonium titanium oxalate at different temperatures. The structures of N-TiO2 were characterized by powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, diffuse reflectance UV-Vis spectroscopy, and scanning electron microscope. The N-doped TiO2 photocatalysts calcined below 700 ℃ are the pure anatase phase but that calcined at 700 ℃ is a mixture of anatase and rutile phases. The doped N locates at the interstitial site of TiO2 which leads to the narrowing of bad gap of pure anatase N-TiO2. Among all photocatalysts, N-TiO2 photocatalysts calcined at 600 and 400 ℃ exhibit the best performance in the photodegradation of methyl orange under the UV light and all-wavelength light illuminations, respectively; however, because of the perfect crystallinity and the existence of anatase-rutile phase junctions, N-TiO2 photocatalyst calcined at 700 ℃ exhibits the highest specific photodegradation rate, i.e., the highest quantum yield, under both the UV light and all-wavelength light illuminations.
基金supported by grants from the National Basic Research Program of China(No.2011CB503804)Special Fund for Scientific Research on Environmental Protection in China(No.201309046)
文摘A new, simple and sensitive method was developed for the determination of silicon tetrahydride in the air of workplace in this study. The alkaline resin-based spherical activated carbon was used to collect sample of silicon tetrahydride at workplace. Silicon tetrahydride was then desorbed from active carbon in 100°C hot water. After reacting with ammonium molybdate, oxalic acid and 1,2,4-trichlorobenzene alpha-naphthol amino sulfonic acid under acid condition, silicon tetrahydride was transformed into silicon molybdenum blue. The absorbance of silicon molybdenum blue was quantitatively measured at the wavelength of 680 nm. The results showed that the average sampling efficiency and desorption efficiency were 97.53% and 94.94%, respectively by this method. Detection limits were 0.054 μg/m L for the spectrophotometric method and 0.14 mg/m3 for the determination of silicon tetrahydride in the air of workplace(sampling volume was 7.5 L). The conversion rate of silicon tetrahydride gradually decreased when storage time of samples was extended. The descent rate of sample was less than 10% when the sample was sealed for 7 days in the room temperature. It was concluded that this spectrophotometric method can be successfully used to determine silicon tetrahydride in the worksites.