期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of iron valence on hydrothermal preparation of pyrochlore-type tungsten oxide
1
作者 Qiu-sheng ZHOU Min XIANG +4 位作者 Dong LI Xiao-bin LI Tian-gui QI Zhi-hong PENG Gui-hua LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期1099-1106,共8页
Pyrochlore-type tungsten oxide (PTO), WO3·0.5H2O, is an emerging material with very wide potential applications. The influences of iron valences and the additive amount of ferrous ion on tungsten crystallization ... Pyrochlore-type tungsten oxide (PTO), WO3·0.5H2O, is an emerging material with very wide potential applications. The influences of iron valences and the additive amount of ferrous ion on tungsten crystallization ratio and the acceleration mechanism of ferrous ion were investigated when PTO was hydrothermally prepared in aqueous ammonium tungstate solution containing ammonium carbonate. The results show that ferrous ion can remarkably accelerate tungsten crystallization while both elemental iron and ferric ion have little influence on the crystallization. Moreover, the tungsten crystallization ratio increases with increasing the amount of ferrous ions added and reaches the maximum of about 60% with ferrous ion concentration of 16 g/L. FTIR analysis of the spent solution after PTO crystallization shows that ferrous ion can accelerate the conversion of WO4 tetrahedral to WO6 octahedron. Combined with XPS and XRD analyses of the hydrothermal product, the acceleration effect of ferrous ion on tungsten crystallization could basically be attributed to the increase in the interplanar spacing of PTO lattice caused by the incorporation of ferrous ion into PTO crystal lattice. The results presented is conducive to the efficient preparation of PTO powder and cleaner tungsten metallurgy. 展开更多
关键词 pyrochlore-type tungsten oxide ammonium tungstate solution ferrous ion CRYSTALLIZATION mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部