In this study,a novel absorpent(MSAR600℃)with a hydrophobic surface and hierarchical porous structure for the removal of kitchen oil was facilely fabricated from the macroalgae,laver(Porphyra haitanensis)by incorpor-...In this study,a novel absorpent(MSAR600℃)with a hydrophobic surface and hierarchical porous structure for the removal of kitchen oil was facilely fabricated from the macroalgae,laver(Porphyra haitanensis)by incorpor-ating high-temperature carbonization and alkyl polyglucosides(APG)and rhamnolipid(RL)surfactants modifi-cation.The characterization results showed MSAR600℃ possessed a louts-leaf-like papillae microstructure with high contact angle(137.5°),abundant porous structure with high specific surface area(23.4 m^(2)/g),and various oxygen-containing functional groups(-OH,C=O,C-O).Batch adsorption experiments were conducted to inves-tigate the effect of adsorption time,temperature,pH,and absorbent dose on kitchen oil adsorption performance.Then the practical application for the removal of kitchen oil using MSAR600℃ was also performed.The results showed that MSAR600℃ had a higher removal efficiency for kitchen oil(75.98%),compared with the commercial detergent(72.3%).This study demonstrates an example of fabricating a green tableware detergent for enhanced removal performance of kitchen oil.展开更多
In this paper,the King’s type modification of(p,q)-Bleimann-Butzer and Hahn operators is defined.Some results based on Korovkin’s approximation theorem for these new operators are studied.With the help of modulus of...In this paper,the King’s type modification of(p,q)-Bleimann-Butzer and Hahn operators is defined.Some results based on Korovkin’s approximation theorem for these new operators are studied.With the help of modulus of continuity and the Lipschitz type maximal functions,the rate of convergence for these new operators are obtained.It is shown that the King’s type modification have better rate of convergence,flexibility than classical(p,q)-BBH operators on some subintervals.Further,for comparisons of the operators,we presented some graphical examples and the error estimation in the form of tables through MATLAB(R2015a)展开更多
Li(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO) solid garnet-type electrolyte has been widely reported due to its outstanding safety and electrochemical stability.However,the inherent rigidity and brittleness of LLZTO lead...Li(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO) solid garnet-type electrolyte has been widely reported due to its outstanding safety and electrochemical stability.However,the inherent rigidity and brittleness of LLZTO lead to poor contact with anode/cathode and the operation failure of full cells.Herein,the dual-interlayers are constructed as the fast interfacial ion-migration channel by using Ti_(3)C_(2)T_(x)(MXene,Txis-O,-OH,-F) with trace ionic liquid(IL),which promote the intimate contact between LLZTO and anode/cathode and suppress Li-dendrites growth.Notably,IL can wet the cathode to promote intimate interface contact and be decomposed into some inorganic compounds(such as Li3N,LiF,and Li2Sx),resulting in reduced interfacial resistance and fast Li-ion transportation.Consequently,in the prepared Li-symmetric cell,the interfacial resistance on the anode side plunges to 33.1 Ω cm^(-2),and stably maintains over 1000 h without short circuit at 0.05 mA cm^(-2).The full cell of Li|LiFePO4delivers a high initial capacity of 158.52 mA h g^(-1)and outstanding retention of 90.18% after 100 cycles at 60℃ and 0.2 C.Our work provides an efficient strategy to design dual-interlayers between LLZTO and anode/cathode for the interfacial modification to enhance the performance of solid garnet batteries.展开更多
Photoelectrochemical(PEC) technology provides a promising prospect for the transformation of polyethylene terephthalate(PET) plastic wastes to produce value-added chemicals.The PEC catalytic systems with high activity...Photoelectrochemical(PEC) technology provides a promising prospect for the transformation of polyethylene terephthalate(PET) plastic wastes to produce value-added chemicals.The PEC catalytic systems with high activity,selectivity and long-term durability are required for the future up-scaling industrial applications.Herein,we employed the interfacial modification strategy to develop an efficient and stable photoanode and evaluated its PEC activity for ethylene glycol(EG,derived from PET hydrolysate) oxidation to formic acid.The interfacial modification between Fe_(2)O_(3)semiconductor and Ni(OH)xcocatalyst with ultrathin TiO_(x) interlayer not only improved the photocurrent density by accelerating the kinetics of photogenerated charge carriers,but also kept the high Faradaic efficiency(over 95% in 30 h) towards the value-added formic acid product.This work proposes an effective method to promote the PEC activity and enhance the long-term stability of photoelectrodes for upcycling PET plastic wastes.展开更多
Lithium-sulfur(Li-S) batteries hold great promise in next-generation high-energy-density energy storage systems,but the intractable shuttle effect and the sluggish redox kinetics of polysulfides hinder the practical i...Lithium-sulfur(Li-S) batteries hold great promise in next-generation high-energy-density energy storage systems,but the intractable shuttle effect and the sluggish redox kinetics of polysulfides hinder the practical implementation of Li-S batteries.Here,heterostructured Fe_(3)C-FeN nanoparticles dotted in the threedimensional-ordered nitrogen-doped carbon framework(Fe_(3)C-FeN@NCF) were synthesized by molecular engineering combined with heterointerface engineering,and were applied to regulate the immobilization-diffusion-conversion behavior of polar polysulfides.It is experimentally and theoretically demonstrated that the heterointerface between Fe_(3)C and FeN exhibits high sulfiphilicity and high electronic/ionic conductivity,thus effectively capturing polysulfides and accelerating the bidirectional conversion of sulfur species.Meanwhile,the holey carbon framework functions as the scaffold to highly disperse binary nanoparticles,ensuring the sufficient exposure of active sites and the easy accessibility for lithium ions and electrons.By virtue of these synergistic merits,the Li-S batteries based on Fe_(3)CFeN@NCF-modified separators afford excellent electrochemical performances including a high rate capacity of 858 mA h g^(-1)at 2 C and a low capacity decay rate of 0.07% per cycle after 800 cycles at 1C This work provides inspiration for the design of heterostructured compounds and sheds light on the potential of heterostructure in high-efficiency Li-S batteries.展开更多
Nickel-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) cathode material has been widely concerned due to its high voltage,high specific capacity and excellent rate performance,which is considered as one of the most promi...Nickel-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) cathode material has been widely concerned due to its high voltage,high specific capacity and excellent rate performance,which is considered as one of the most promising cathode materials for the next generation of high-energy-density solid-state lithium batteries.However,serious electro-chemo-mechanical degradation of Nickel-rich cathode during cycling,especially at a high voltage(over 4.5 V),constrains their large-scale application.Here,using the multiphysical simulation,highly-conductive polymer matrix with spontaneous stress-buffering effect was uncovered theoretically for reinforcing the electrochemical performance of composited NCM81 1 cathode through the visualization of uniform concentration distribution of Li-ion coupled with improved stress field inside NCM811 cathode.Thereupon,polyacrylonitrile(PAN) and soft polyvinylidene fluoride(PVDF) were selected as the polymer matrix to fabricate the composited NCM811 cathode(PVDFPAN@NCM811) for improving the electrochemical performance of the solid-state NMC811|Li full cells,which can maintain high capacity over 146.2 mA h g^(-1)after 200 cycles at a high voltage of 4.5 V.Suggestively,designing a multifunctional polymer matrix with high ionic conductivity and mechanical property can buffer the stress and maintain the integrity of the structure,which can be regarded as the door-opening avenue to realize the high electrochemical performance of Ni-rich cathode for solidstate batteries.展开更多
Magnesium oxysulfate whisker(MOSW) was produced using magnesite and sulfuric acid as raw materials by hydrothermal method and further modified by taking zinc stearate as modifier via wet chemical method.The infiuenc...Magnesium oxysulfate whisker(MOSW) was produced using magnesite and sulfuric acid as raw materials by hydrothermal method and further modified by taking zinc stearate as modifier via wet chemical method.The infiuences of the amount of modifier, slurry concentration, modification duration, modification temperature and the stirring rate on the surface modification were investigated. The effects of surface modification in functional groups, morphology and electron binding energies of surface elements of MOSW were characterized by Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). The mechanism of modification was analyzed by studying the microstructure model of the surface of MOSW, which was modified by zinc stearate. The results show that the coordination is generated by the Mg element and O in carboxylic ion of modifier, and the chemical bond could be obtained by modification. Moreover, the surface of MOSW bonds the molecules of zinc stearate, and it becomes rough. Then, the hydrophobicity of MOSW is also improved significantly. In addition, the 1s electron binding energies of Mg and O on the surface of MOSW decrease by1.2 and 0.2 eV, respectively.展开更多
基金This study was supported by the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes(No.2021J004)the Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202044721).
文摘In this study,a novel absorpent(MSAR600℃)with a hydrophobic surface and hierarchical porous structure for the removal of kitchen oil was facilely fabricated from the macroalgae,laver(Porphyra haitanensis)by incorpor-ating high-temperature carbonization and alkyl polyglucosides(APG)and rhamnolipid(RL)surfactants modifi-cation.The characterization results showed MSAR600℃ possessed a louts-leaf-like papillae microstructure with high contact angle(137.5°),abundant porous structure with high specific surface area(23.4 m^(2)/g),and various oxygen-containing functional groups(-OH,C=O,C-O).Batch adsorption experiments were conducted to inves-tigate the effect of adsorption time,temperature,pH,and absorbent dose on kitchen oil adsorption performance.Then the practical application for the removal of kitchen oil using MSAR600℃ was also performed.The results showed that MSAR600℃ had a higher removal efficiency for kitchen oil(75.98%),compared with the commercial detergent(72.3%).This study demonstrates an example of fabricating a green tableware detergent for enhanced removal performance of kitchen oil.
文摘In this paper,the King’s type modification of(p,q)-Bleimann-Butzer and Hahn operators is defined.Some results based on Korovkin’s approximation theorem for these new operators are studied.With the help of modulus of continuity and the Lipschitz type maximal functions,the rate of convergence for these new operators are obtained.It is shown that the King’s type modification have better rate of convergence,flexibility than classical(p,q)-BBH operators on some subintervals.Further,for comparisons of the operators,we presented some graphical examples and the error estimation in the form of tables through MATLAB(R2015a)
基金financially supported by the National Natural Science Foundation of China(NSFC)(52172096)。
文摘Li(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO) solid garnet-type electrolyte has been widely reported due to its outstanding safety and electrochemical stability.However,the inherent rigidity and brittleness of LLZTO lead to poor contact with anode/cathode and the operation failure of full cells.Herein,the dual-interlayers are constructed as the fast interfacial ion-migration channel by using Ti_(3)C_(2)T_(x)(MXene,Txis-O,-OH,-F) with trace ionic liquid(IL),which promote the intimate contact between LLZTO and anode/cathode and suppress Li-dendrites growth.Notably,IL can wet the cathode to promote intimate interface contact and be decomposed into some inorganic compounds(such as Li3N,LiF,and Li2Sx),resulting in reduced interfacial resistance and fast Li-ion transportation.Consequently,in the prepared Li-symmetric cell,the interfacial resistance on the anode side plunges to 33.1 Ω cm^(-2),and stably maintains over 1000 h without short circuit at 0.05 mA cm^(-2).The full cell of Li|LiFePO4delivers a high initial capacity of 158.52 mA h g^(-1)and outstanding retention of 90.18% after 100 cycles at 60℃ and 0.2 C.Our work provides an efficient strategy to design dual-interlayers between LLZTO and anode/cathode for the interfacial modification to enhance the performance of solid garnet batteries.
基金supported by the NSFC(21777096,21777097)the Ministry of Science and Technology of China(2018YFC1802001)+1 种基金the OU–SJTU strategic partnership development fundInternational Joint Research Promotion Program in Osaka University。
文摘Photoelectrochemical(PEC) technology provides a promising prospect for the transformation of polyethylene terephthalate(PET) plastic wastes to produce value-added chemicals.The PEC catalytic systems with high activity,selectivity and long-term durability are required for the future up-scaling industrial applications.Herein,we employed the interfacial modification strategy to develop an efficient and stable photoanode and evaluated its PEC activity for ethylene glycol(EG,derived from PET hydrolysate) oxidation to formic acid.The interfacial modification between Fe_(2)O_(3)semiconductor and Ni(OH)xcocatalyst with ultrathin TiO_(x) interlayer not only improved the photocurrent density by accelerating the kinetics of photogenerated charge carriers,but also kept the high Faradaic efficiency(over 95% in 30 h) towards the value-added formic acid product.This work proposes an effective method to promote the PEC activity and enhance the long-term stability of photoelectrodes for upcycling PET plastic wastes.
基金supported by the National Natural Science Foundation of China(22005341 and 22138013)the Shandong Provincial Natural Science Foundation(ZR2020QB128 and ZR2020ZD08)+2 种基金the Taishan Scholar Project(ts201712020)the Major Scientific and Technological Innovation Project of Shandong Province(2020CXGC010402)the Independent Innovation Research Project of China University of Petroleum(22CX06026A)。
文摘Lithium-sulfur(Li-S) batteries hold great promise in next-generation high-energy-density energy storage systems,but the intractable shuttle effect and the sluggish redox kinetics of polysulfides hinder the practical implementation of Li-S batteries.Here,heterostructured Fe_(3)C-FeN nanoparticles dotted in the threedimensional-ordered nitrogen-doped carbon framework(Fe_(3)C-FeN@NCF) were synthesized by molecular engineering combined with heterointerface engineering,and were applied to regulate the immobilization-diffusion-conversion behavior of polar polysulfides.It is experimentally and theoretically demonstrated that the heterointerface between Fe_(3)C and FeN exhibits high sulfiphilicity and high electronic/ionic conductivity,thus effectively capturing polysulfides and accelerating the bidirectional conversion of sulfur species.Meanwhile,the holey carbon framework functions as the scaffold to highly disperse binary nanoparticles,ensuring the sufficient exposure of active sites and the easy accessibility for lithium ions and electrons.By virtue of these synergistic merits,the Li-S batteries based on Fe_(3)CFeN@NCF-modified separators afford excellent electrochemical performances including a high rate capacity of 858 mA h g^(-1)at 2 C and a low capacity decay rate of 0.07% per cycle after 800 cycles at 1C This work provides inspiration for the design of heterostructured compounds and sheds light on the potential of heterostructure in high-efficiency Li-S batteries.
基金financially supported by the Natural Science Foundation of Hunan Province(2020JJ5653)the National Natural Science Foundation of China(21875282,22102212)+1 种基金the Ministry of Science and Higher Education of the Russian Federation(07515-2022-1150)the National University of Defense Technology Scientific Research Project(ZK20-44)。
文摘Nickel-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) cathode material has been widely concerned due to its high voltage,high specific capacity and excellent rate performance,which is considered as one of the most promising cathode materials for the next generation of high-energy-density solid-state lithium batteries.However,serious electro-chemo-mechanical degradation of Nickel-rich cathode during cycling,especially at a high voltage(over 4.5 V),constrains their large-scale application.Here,using the multiphysical simulation,highly-conductive polymer matrix with spontaneous stress-buffering effect was uncovered theoretically for reinforcing the electrochemical performance of composited NCM81 1 cathode through the visualization of uniform concentration distribution of Li-ion coupled with improved stress field inside NCM811 cathode.Thereupon,polyacrylonitrile(PAN) and soft polyvinylidene fluoride(PVDF) were selected as the polymer matrix to fabricate the composited NCM811 cathode(PVDFPAN@NCM811) for improving the electrochemical performance of the solid-state NMC811|Li full cells,which can maintain high capacity over 146.2 mA h g^(-1)after 200 cycles at a high voltage of 4.5 V.Suggestively,designing a multifunctional polymer matrix with high ionic conductivity and mechanical property can buffer the stress and maintain the integrity of the structure,which can be regarded as the door-opening avenue to realize the high electrochemical performance of Ni-rich cathode for solidstate batteries.
基金financially supported by the National Natural Science Foundation of China (No. 51272163)
文摘Magnesium oxysulfate whisker(MOSW) was produced using magnesite and sulfuric acid as raw materials by hydrothermal method and further modified by taking zinc stearate as modifier via wet chemical method.The infiuences of the amount of modifier, slurry concentration, modification duration, modification temperature and the stirring rate on the surface modification were investigated. The effects of surface modification in functional groups, morphology and electron binding energies of surface elements of MOSW were characterized by Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). The mechanism of modification was analyzed by studying the microstructure model of the surface of MOSW, which was modified by zinc stearate. The results show that the coordination is generated by the Mg element and O in carboxylic ion of modifier, and the chemical bond could be obtained by modification. Moreover, the surface of MOSW bonds the molecules of zinc stearate, and it becomes rough. Then, the hydrophobicity of MOSW is also improved significantly. In addition, the 1s electron binding energies of Mg and O on the surface of MOSW decrease by1.2 and 0.2 eV, respectively.