In the internet of battlefield things, ammunition is becoming networked and intelligent, which depends on location information. Therefore, this paper focuses on the self-organized network collaborative localization of...In the internet of battlefield things, ammunition is becoming networked and intelligent, which depends on location information. Therefore, this paper focuses on the self-organized network collaborative localization of munitions with an aerial three-dimensional(3D) highly-dynamic topographic structure under a satellite denied environment. As for aerial networked munitions, the measurement of munitions is objectively incomplete due to the degenerated and interrupted link of munitions. For this reason, a cluster-oriented collaborative localization method is put forward in this paper. Multidimensional scaling(MDS) was first integrated with a trilateration localization method(TLM) to construct a relative localization algorithm for determining the relative location of a mobile cluster network. The information related to relative velocity was then combined into a collaborative localization framework to devise a TLM-vMDS algorithm. Finally, an iterative refinement algorithm based on scaling by majorizing a complicated function(SMACOF) was employed to effectively eliminate the influence of incomplete link observation on localization accuracy. Compared with the currently available advanced algorithms, the proposed TLM-vMDS algorithm achieves higher localization accuracy and faster convergence for a cluster of extensively networked munitions, and also offers better numerical stability and robustness for highspeed motion models.展开更多
In the networking of loitering munitions during a battle,clustering and localizing algorithms become a major problem because of their highly dynamic topological structure,incomplete connectivity,and limited energy.Thi...In the networking of loitering munitions during a battle,clustering and localizing algorithms become a major problem because of their highly dynamic topological structure,incomplete connectivity,and limited energy.This paper proposed swarm intelligence based collaborative localizing,clustering,and routing scheme for an ad hoc network of loitering munitions in a satellite denied environment.A hybrid algorithm was first devised by integrating an improved coyote optimization algorithm with a simplified grey wolf optimizer under the sinusoidal crossover strategy.The performance of this algorithm was considerably improved thanks to integration.On this basis,a swarm intelligence based localizing algorithm was presented.Bounding cubes were created to reduce the initial search space,which effectively lowered the localizing error.Second,an energysaving clustering algorithm based on the hybrid algorithm was put forward to enhance the clustering efficiency by virtue of grey wolf hierarchy.Meanwhile,an analysis model was developed to determine the optimal number of clusters using the lowest possible number of transmissions.Ultimately,a compressed sensing routing scheme based on the hybrid algorithm was proposed to transmit data from a cluster head to a base station.This algorithm constructed an efficient routing tree from the cluster head to the base station,so as to reduce the routing delay and transmission count.As revealed in the results of simulation experiments,the proposed collaborative localizing,clustering and routing algorithms achieved better performance than other popular algorithms employed in various scenarios.展开更多
文摘In the internet of battlefield things, ammunition is becoming networked and intelligent, which depends on location information. Therefore, this paper focuses on the self-organized network collaborative localization of munitions with an aerial three-dimensional(3D) highly-dynamic topographic structure under a satellite denied environment. As for aerial networked munitions, the measurement of munitions is objectively incomplete due to the degenerated and interrupted link of munitions. For this reason, a cluster-oriented collaborative localization method is put forward in this paper. Multidimensional scaling(MDS) was first integrated with a trilateration localization method(TLM) to construct a relative localization algorithm for determining the relative location of a mobile cluster network. The information related to relative velocity was then combined into a collaborative localization framework to devise a TLM-vMDS algorithm. Finally, an iterative refinement algorithm based on scaling by majorizing a complicated function(SMACOF) was employed to effectively eliminate the influence of incomplete link observation on localization accuracy. Compared with the currently available advanced algorithms, the proposed TLM-vMDS algorithm achieves higher localization accuracy and faster convergence for a cluster of extensively networked munitions, and also offers better numerical stability and robustness for highspeed motion models.
文摘In the networking of loitering munitions during a battle,clustering and localizing algorithms become a major problem because of their highly dynamic topological structure,incomplete connectivity,and limited energy.This paper proposed swarm intelligence based collaborative localizing,clustering,and routing scheme for an ad hoc network of loitering munitions in a satellite denied environment.A hybrid algorithm was first devised by integrating an improved coyote optimization algorithm with a simplified grey wolf optimizer under the sinusoidal crossover strategy.The performance of this algorithm was considerably improved thanks to integration.On this basis,a swarm intelligence based localizing algorithm was presented.Bounding cubes were created to reduce the initial search space,which effectively lowered the localizing error.Second,an energysaving clustering algorithm based on the hybrid algorithm was put forward to enhance the clustering efficiency by virtue of grey wolf hierarchy.Meanwhile,an analysis model was developed to determine the optimal number of clusters using the lowest possible number of transmissions.Ultimately,a compressed sensing routing scheme based on the hybrid algorithm was proposed to transmit data from a cluster head to a base station.This algorithm constructed an efficient routing tree from the cluster head to the base station,so as to reduce the routing delay and transmission count.As revealed in the results of simulation experiments,the proposed collaborative localizing,clustering and routing algorithms achieved better performance than other popular algorithms employed in various scenarios.