A new technique of electroplating amorphous Fe-Ni-W alloy deposits was proposed.The structure and morphology o Fe-Ni-W alloy deposit were detected by XRD and SEM.The friction and wear behavior of Fe-Ni-W alloy deposit...A new technique of electroplating amorphous Fe-Ni-W alloy deposits was proposed.The structure and morphology o Fe-Ni-W alloy deposit were detected by XRD and SEM.The friction and wear behavior of Fe-Ni-W alloy deposit were studied and compared with that of chromium deposit.The corrosion properties against 5% sodium chloride,5% sulfuric acid and 5% sodium hydroxide were also discussed.The experimental results indicate that Fe-Ni-W alloy deposits have superior properties against wea than hard chromium deposits under dry sliding condition.Under oil sliding condition,except their better wear resistance,the deposits can protect their counterparts against wear.The deposits plated on brass and AISI 1045 steel show good behavior against corrosion o 5% sodium chloride,5% sulfuric acid and 5% sodium hydroxide.The bath of electroplating amorphous Fe-Ni-W alloy deposits is environmentally friendly and would find widely use in industry.展开更多
Ni-W alloys and their composite deposits are electroplated on the metals when an appropriate complex agent is selected on the base of the theories of electrochemistry and complex chemistry, and the principle of induce...Ni-W alloys and their composite deposits are electroplated on the metals when an appropriate complex agent is selected on the base of the theories of electrochemistry and complex chemistry, and the principle of induced codeposition. Effects of the bath composition, pH value, temperature and current density on the electrode position of Ni-W alloys and their composite deposits have been investigated, and the effect of heat treatment temperature on the hardness, structure and cohesive force of the amorphous Ni-W alloys and their composite deposits are also discussed. Results showed that the alloys containing more than 44 wt pct W content and the composite deposits containing 7.8 wt pct SiC content could be obtained by making use of the appropriate bath composition and plating conditions. Alloys and their composite deposits with over 44 wt pct W content show amorphous structure. The hardness of amorphous Ni-W alloys and their composite deposits increases obviously when heated, and can reach to 1350 HV and 1520 HV respectively for 46 wt pct W content. The cohesion on Cu, carbon steel and stainless steel is very good.展开更多
The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome ...The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome deposit under the same testing condition was also made. The experimental results show that the hardness and wear resistance of amorphous Fe-Co-W alloy deposits are improved with the increasing of heat treatment temperature, and reach the maximum value at 800 ℃, then decrease above 800 ℃. Under 40 N load, the wear resistance properties of the alloy deposits heat treated at 800 ℃ are superior to those of hard chrome deposit. The main wear mechanisms of amorphous Fe-Co-W alloy deposits heat treated below 600 ℃ are peeling, plastic and flowing deformation; when the deposits are heat treated above 700 ℃, they are plastic and flowing deformation. While the main wear mechanisms of hard chrome are abrasive wear, fatigue and peeling.展开更多
The preparation, formation mechanism, surface appearance and structure of electroless plating Fe-Mo-W-B amorphous alloys were systematically studied. The deposition rates of the deposits in different bath composition ...The preparation, formation mechanism, surface appearance and structure of electroless plating Fe-Mo-W-B amorphous alloys were systematically studied. The deposition rates of the deposits in different bath composition as plated were measured. The formation mechanism of the deposits was discussed. The parameter for amorphous structures formation was suggested for the deposits.展开更多
The stability of the electrodeposited amorphous Ni-Fe-P alloys was studied by DTA,DSC,XRD and improved four-ball wear tester in order to clear its applied scope.The results show that the element content has influence ...The stability of the electrodeposited amorphous Ni-Fe-P alloys was studied by DTA,DSC,XRD and improved four-ball wear tester in order to clear its applied scope.The results show that the element content has influence on the stability of amorphous Ni-Fe-P alloy,in which the crystallization temperature increases with Fe content,and the increase of P content delays the appearance of stable crystallization phases and recrystallization.There exist 6 exothermal reactions during heating the amorphous Ni69Fe8P23 alloy continuously.The activation energies of exothermal reactions at 248,303,322,350,376 and 442 ℃ are 131.5,111.6,237.8,253.6 and 238.5 kJ/mol,respectively.The amorphous Ni60Fe22P18 alloy crystallizes when the heating temperature is beyond 250 ℃.The stable crystallization phases consist of Ni(Fe)and Ni3P-type compounds Ni3P,Fe3P,(Fe,Ni)3P.The pressure and fraction have influence on the stability of amorphous alloy.Rubbing above the critical pressure crystallization will take place on the fractional surface.The crystallization phases due to pressure and fraction are different from those due to heating.It is the crystallization that increases the wear resistance of Ni-Fe-P coating under higher pressure.展开更多
The influences of heat treatment time on structure and the electrochemical behavior of electro-deposited amorphous Ni-P alloy coating were studied. The results show that the as-plated deposits have an amorphous struct...The influences of heat treatment time on structure and the electrochemical behavior of electro-deposited amorphous Ni-P alloy coating were studied. The results show that the as-plated deposits have an amorphous structure, and the deposits crystallize into Ni12P5 and Ni3P at 260 °C, and the corrosion resistance of the as-plated deposits are better than that of the deposits after heat treatment.展开更多
In this investigation, protective layers were formed on aluminum substrate by Plasma Electrolytic Deposition (PED) using sodium silicate solution. The relation between the thickness of the layer and process time were ...In this investigation, protective layers were formed on aluminum substrate by Plasma Electrolytic Deposition (PED) using sodium silicate solution. The relation between the thickness of the layer and process time were studied. XRD, SEM, EDS were used to study the layer’s structure, composition and micrograph. The results show that the deposited layers are amorphous and contain mainly oxygen, silicon, and aluminum. The possible formation mechanism of amorphous [Al-Si-O] layer was proposed: During discharge periods, A12O3 phase of the passive film and SiO32"near the substrate surface are sintered into xSiO2(l - x)Al2O, and then transformed into amorphous [Al-Si-O] phase.展开更多
The experimental researches on the chemical deposition of Ni-Mo-P amorphous alloys were carried out by adding Na2 MoO4 into acidic solutions. The optimum technology conditions were obtained by orthogonal design experi...The experimental researches on the chemical deposition of Ni-Mo-P amorphous alloys were carried out by adding Na2 MoO4 into acidic solutions. The optimum technology conditions were obtained by orthogonal design experiments. The structures and the relationship between compositions and their thermal stability were studied by energy spectrum (EC), scanning electron micrograph and X-ray diffraction spectrum. Compared with Ni-P amorphous alloys, the Ni-Mo-P amorphous alloys have high crystallization temperature and thermal stability, and the hardness reaches its peak when the annealing temperature is 500 ℃. With the increase of the heat treatment temperature, the surface morphology of the alloys changes.展开更多
A mathematical expression of the crystal growth rate during crystallization of the amorphous alloys was derived from the micromechanism of crystallization newly developed by the authors. Thus, the satisfactory explana...A mathematical expression of the crystal growth rate during crystallization of the amorphous alloys was derived from the micromechanism of crystallization newly developed by the authors. Thus, the satisfactory explanation of the experimental results obtained by Nunogaki et al., Heimendahl et al. and the authors might be found. It seems also to be modelled with the expression for the crystal growth and the crystal size influenced by time during the crystallization of amorphous Ni-P alloy foil at in situ heating. Based on the expression, the factors influencing the crystal growth rate, such as temperature, time and microstructure of amorphous alloys have been discussed.展开更多
The amorphous Ti_(l_x)Pd_x alloys within a wider composition range of 0.25<x<0.6 have been prepared using sputter-deposition method on the liquid-nitrogen-cooled substrates.The for- mation of amorphous Ti-Pd all...The amorphous Ti_(l_x)Pd_x alloys within a wider composition range of 0.25<x<0.6 have been prepared using sputter-deposition method on the liquid-nitrogen-cooled substrates.The for- mation of amorphous Ti-Pd alloys relates to the topologically close-packed intermetallic compounds existing in the equilibrium phase diagram.These amorphous Ti-Pd alloys are identified by differential scanning calorimetry that the crystallization begins at about 700 K. The insensitive dependence of the crystallization temperature on composition of the alloys is explained with a model proposed by Miedema and Buschow.The electric resistivity of the amorphous Ti-Pd alloys in the range of 4.2 to 270 K decreases monotonously with in- creasing temperature.展开更多
Hot corrosion behaviors of the 921A alloy and Fe-based amorphous coating induced by KCl-10% ZnCl_(2) and KCl-55% ZnCl_(2) salts at 450℃ in air for 40 h were investigated.Results show that the 921A alloy suffers more ...Hot corrosion behaviors of the 921A alloy and Fe-based amorphous coating induced by KCl-10% ZnCl_(2) and KCl-55% ZnCl_(2) salts at 450℃ in air for 40 h were investigated.Results show that the 921A alloy suffers more serious corrosion damage than the coating and KCl-55% ZnCl_(2) salts are more corrosive than KCl-10% ZnCl_(2) salts.In the two salts,an Fe_(2)O_(3) layer is formed on the 921A alloy surface,while an outer Fe-rich oxide layer and an inner Cr-rich oxide layer are formed on the surface of the coating.Moreover,a certain amount of metal chloride can be found at the oxide/alloy(coating)interface,which can be explained by "active oxidation".However,the corrosion resistance of the Fe-based amorphous coating did not achieve the desired results,probably because the intersplats in the coating serve as corrosion diffusing channels,which facilitate the corrosion damage rate.Nevertheless,the coating is still in amorphous state after hot corrosion exposure.展开更多
The reduction of Ni(Ⅱ) is an irreversible reaction and La(Ⅲ) cannot be reduced to La directly but be co-deposited inductively in the present of Ni(Ⅱ) in the Acetamide-Urea-NaBr molten salt electrolyte at 353 K. The...The reduction of Ni(Ⅱ) is an irreversible reaction and La(Ⅲ) cannot be reduced to La directly but be co-deposited inductively in the present of Ni(Ⅱ) in the Acetamide-Urea-NaBr molten salt electrolyte at 353 K. The uncrystallized alloy film of La-Ni is obtained by potentiostatic electrolysis, and the amount of La grows with increasing cathodic overpotential, molar ratios of La(Ⅲ) to Ni(Ⅱ) and the electrolysis time. The maximum amount of La in alloy film reaches to 78.81% (mass fraction) in present study.展开更多
The Ni-W gradient deposit with nano-structure was prepared by an electrochemical deposition method.X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDXA) indicate that the crystallite size of the deposit ...The Ni-W gradient deposit with nano-structure was prepared by an electrochemical deposition method.X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDXA) indicate that the crystallite size of the deposit decreases from 10.3nm to 1.5nm and the crystal grating aberrance increases with the increase of W content in the growing direction of the deposit. The structure of deposit changes from crystalline to amorphous stepwise with associated increase of crystal grating aberrance, and presents gradient distribution. These show that the deposit isgradient with nano-structure.展开更多
基金Project(04GK1007) supported by the Science and Technology Office of Hunan Province,China
文摘A new technique of electroplating amorphous Fe-Ni-W alloy deposits was proposed.The structure and morphology o Fe-Ni-W alloy deposit were detected by XRD and SEM.The friction and wear behavior of Fe-Ni-W alloy deposit were studied and compared with that of chromium deposit.The corrosion properties against 5% sodium chloride,5% sulfuric acid and 5% sodium hydroxide were also discussed.The experimental results indicate that Fe-Ni-W alloy deposits have superior properties against wea than hard chromium deposits under dry sliding condition.Under oil sliding condition,except their better wear resistance,the deposits can protect their counterparts against wear.The deposits plated on brass and AISI 1045 steel show good behavior against corrosion o 5% sodium chloride,5% sulfuric acid and 5% sodium hydroxide.The bath of electroplating amorphous Fe-Ni-W alloy deposits is environmentally friendly and would find widely use in industry.
文摘Ni-W alloys and their composite deposits are electroplated on the metals when an appropriate complex agent is selected on the base of the theories of electrochemistry and complex chemistry, and the principle of induced codeposition. Effects of the bath composition, pH value, temperature and current density on the electrode position of Ni-W alloys and their composite deposits have been investigated, and the effect of heat treatment temperature on the hardness, structure and cohesive force of the amorphous Ni-W alloys and their composite deposits are also discussed. Results showed that the alloys containing more than 44 wt pct W content and the composite deposits containing 7.8 wt pct SiC content could be obtained by making use of the appropriate bath composition and plating conditions. Alloys and their composite deposits with over 44 wt pct W content show amorphous structure. The hardness of amorphous Ni-W alloys and their composite deposits increases obviously when heated, and can reach to 1350 HV and 1520 HV respectively for 46 wt pct W content. The cohesion on Cu, carbon steel and stainless steel is very good.
文摘The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome deposit under the same testing condition was also made. The experimental results show that the hardness and wear resistance of amorphous Fe-Co-W alloy deposits are improved with the increasing of heat treatment temperature, and reach the maximum value at 800 ℃, then decrease above 800 ℃. Under 40 N load, the wear resistance properties of the alloy deposits heat treated at 800 ℃ are superior to those of hard chrome deposit. The main wear mechanisms of amorphous Fe-Co-W alloy deposits heat treated below 600 ℃ are peeling, plastic and flowing deformation; when the deposits are heat treated above 700 ℃, they are plastic and flowing deformation. While the main wear mechanisms of hard chrome are abrasive wear, fatigue and peeling.
文摘The preparation, formation mechanism, surface appearance and structure of electroless plating Fe-Mo-W-B amorphous alloys were systematically studied. The deposition rates of the deposits in different bath composition as plated were measured. The formation mechanism of the deposits was discussed. The parameter for amorphous structures formation was suggested for the deposits.
基金Project(E0410014) supported by the National Science Foundation of Fujian Province,China
文摘The stability of the electrodeposited amorphous Ni-Fe-P alloys was studied by DTA,DSC,XRD and improved four-ball wear tester in order to clear its applied scope.The results show that the element content has influence on the stability of amorphous Ni-Fe-P alloy,in which the crystallization temperature increases with Fe content,and the increase of P content delays the appearance of stable crystallization phases and recrystallization.There exist 6 exothermal reactions during heating the amorphous Ni69Fe8P23 alloy continuously.The activation energies of exothermal reactions at 248,303,322,350,376 and 442 ℃ are 131.5,111.6,237.8,253.6 and 238.5 kJ/mol,respectively.The amorphous Ni60Fe22P18 alloy crystallizes when the heating temperature is beyond 250 ℃.The stable crystallization phases consist of Ni(Fe)and Ni3P-type compounds Ni3P,Fe3P,(Fe,Ni)3P.The pressure and fraction have influence on the stability of amorphous alloy.Rubbing above the critical pressure crystallization will take place on the fractional surface.The crystallization phases due to pressure and fraction are different from those due to heating.It is the crystallization that increases the wear resistance of Ni-Fe-P coating under higher pressure.
文摘The influences of heat treatment time on structure and the electrochemical behavior of electro-deposited amorphous Ni-P alloy coating were studied. The results show that the as-plated deposits have an amorphous structure, and the deposits crystallize into Ni12P5 and Ni3P at 260 °C, and the corrosion resistance of the as-plated deposits are better than that of the deposits after heat treatment.
基金supported by the National Natural Sciences Foundation of China(50071066)
文摘In this investigation, protective layers were formed on aluminum substrate by Plasma Electrolytic Deposition (PED) using sodium silicate solution. The relation between the thickness of the layer and process time were studied. XRD, SEM, EDS were used to study the layer’s structure, composition and micrograph. The results show that the deposited layers are amorphous and contain mainly oxygen, silicon, and aluminum. The possible formation mechanism of amorphous [Al-Si-O] layer was proposed: During discharge periods, A12O3 phase of the passive film and SiO32"near the substrate surface are sintered into xSiO2(l - x)Al2O, and then transformed into amorphous [Al-Si-O] phase.
基金Project(B0310) supported by the Natural Science Foundation of Heilongjiang Province
文摘The experimental researches on the chemical deposition of Ni-Mo-P amorphous alloys were carried out by adding Na2 MoO4 into acidic solutions. The optimum technology conditions were obtained by orthogonal design experiments. The structures and the relationship between compositions and their thermal stability were studied by energy spectrum (EC), scanning electron micrograph and X-ray diffraction spectrum. Compared with Ni-P amorphous alloys, the Ni-Mo-P amorphous alloys have high crystallization temperature and thermal stability, and the hardness reaches its peak when the annealing temperature is 500 ℃. With the increase of the heat treatment temperature, the surface morphology of the alloys changes.
文摘A mathematical expression of the crystal growth rate during crystallization of the amorphous alloys was derived from the micromechanism of crystallization newly developed by the authors. Thus, the satisfactory explanation of the experimental results obtained by Nunogaki et al., Heimendahl et al. and the authors might be found. It seems also to be modelled with the expression for the crystal growth and the crystal size influenced by time during the crystallization of amorphous Ni-P alloy foil at in situ heating. Based on the expression, the factors influencing the crystal growth rate, such as temperature, time and microstructure of amorphous alloys have been discussed.
文摘The amorphous Ti_(l_x)Pd_x alloys within a wider composition range of 0.25<x<0.6 have been prepared using sputter-deposition method on the liquid-nitrogen-cooled substrates.The for- mation of amorphous Ti-Pd alloys relates to the topologically close-packed intermetallic compounds existing in the equilibrium phase diagram.These amorphous Ti-Pd alloys are identified by differential scanning calorimetry that the crystallization begins at about 700 K. The insensitive dependence of the crystallization temperature on composition of the alloys is explained with a model proposed by Miedema and Buschow.The electric resistivity of the amorphous Ti-Pd alloys in the range of 4.2 to 270 K decreases monotonously with in- creasing temperature.
基金supported by GuangDong Basic and Applied Basic Research Foundation(No.2020A1515110128).
文摘Hot corrosion behaviors of the 921A alloy and Fe-based amorphous coating induced by KCl-10% ZnCl_(2) and KCl-55% ZnCl_(2) salts at 450℃ in air for 40 h were investigated.Results show that the 921A alloy suffers more serious corrosion damage than the coating and KCl-55% ZnCl_(2) salts are more corrosive than KCl-10% ZnCl_(2) salts.In the two salts,an Fe_(2)O_(3) layer is formed on the 921A alloy surface,while an outer Fe-rich oxide layer and an inner Cr-rich oxide layer are formed on the surface of the coating.Moreover,a certain amount of metal chloride can be found at the oxide/alloy(coating)interface,which can be explained by "active oxidation".However,the corrosion resistance of the Fe-based amorphous coating did not achieve the desired results,probably because the intersplats in the coating serve as corrosion diffusing channels,which facilitate the corrosion damage rate.Nevertheless,the coating is still in amorphous state after hot corrosion exposure.
文摘The reduction of Ni(Ⅱ) is an irreversible reaction and La(Ⅲ) cannot be reduced to La directly but be co-deposited inductively in the present of Ni(Ⅱ) in the Acetamide-Urea-NaBr molten salt electrolyte at 353 K. The uncrystallized alloy film of La-Ni is obtained by potentiostatic electrolysis, and the amount of La grows with increasing cathodic overpotential, molar ratios of La(Ⅲ) to Ni(Ⅱ) and the electrolysis time. The maximum amount of La in alloy film reaches to 78.81% (mass fraction) in present study.
基金Supported by the National Natural Science Foundation of China (No.59671058)
文摘The Ni-W gradient deposit with nano-structure was prepared by an electrochemical deposition method.X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDXA) indicate that the crystallite size of the deposit decreases from 10.3nm to 1.5nm and the crystal grating aberrance increases with the increase of W content in the growing direction of the deposit. The structure of deposit changes from crystalline to amorphous stepwise with associated increase of crystal grating aberrance, and presents gradient distribution. These show that the deposit isgradient with nano-structure.