A series of Ce-doped Ni-B amorphous alloy catalysts were prepared by a KBH_4 reduction method, characterized by ICP, BET, XRD, H_2-chemisorption, H_2-TPD, etc., and tested in the hydrogenation of 2-ethylanthraquinone....A series of Ce-doped Ni-B amorphous alloy catalysts were prepared by a KBH_4 reduction method, characterized by ICP, BET, XRD, H_2-chemisorption, H_2-TPD, etc., and tested in the hydrogenation of 2-ethylanthraquinone. The results of characterization show that with the addition of Ce the amount of H_2-chemisorption and H_2-TPD areas first increases markedly and then decreases with the maximum appears at the atomic ratio of Ce to Ni of 0.036. The hydrogenation activity also shows the same trend. The effects of Ce are attributed to its dispersion of Ni particles, resulting in the formation of more surface Ni centers. However, much higher Ce contents may result in the decrease of the surface Ni contents. After heat treatment at higher temperatures, the amorphous structure of Ni-B is destroyed.展开更多
In the present paper, one hundred cluster models NinBP (n = 1-6) have been designed and studied by density functional theory (DFT) to get an insight into the local structure, catalytic properties and sulfur resist...In the present paper, one hundred cluster models NinBP (n = 1-6) have been designed and studied by density functional theory (DFT) to get an insight into the local structure, catalytic properties and sulfur resistibility of amorphous alloy Ni-B-P. The configurations in triplet state are found more stable than those in the singlet state. It is found: that as the content of Ni in the clusters increases, the value of Fermi level in clusters fluctuated, which shows that the content of Ni can influence the Fermi level to a certain extent. Based on the Fermi level and DOS, we consider the activity of catalyst in hydrogenation reaction is the best in cluster Ni3BP. On the basis of the charge of clusters NinBP (n = 1 -6), we conclude the amorphous alloy Ni-B-P with high Ni content has better sulfur resistibility and the best hydrogenation activity, strong sulfur resistibility appears in clusters Ni3BP, and the amorphous alloy Ni60B20P20 with similar proportion is expected to prepare in the future.展开更多
Uniform Ni-B amorphous alloys about 14 nm have been prepared on CNTs-A support,named Ni-B/CNTs-A. In comparison with the Ni-B/CNTs amorphous catalyst, Ni-B/CNTs-A showed higher nickel loading, determined by ICP and be...Uniform Ni-B amorphous alloys about 14 nm have been prepared on CNTs-A support,named Ni-B/CNTs-A. In comparison with the Ni-B/CNTs amorphous catalyst, Ni-B/CNTs-A showed higher nickel loading, determined by ICP and better catalytic activity and ethylene selectivity in the acetylene hydrogenation reaction.展开更多
Heat treatment of carbon nanotubes(CNTs) was carried out under ammonia atmosphere and then CNTs were modified by Triton x-100(CNTs-T). Ni-B amorphous alloy catalysts supported on CNTs and CNTs-T were prepared by impre...Heat treatment of carbon nanotubes(CNTs) was carried out under ammonia atmosphere and then CNTs were modified by Triton x-100(CNTs-T). Ni-B amorphous alloy catalysts supported on CNTs and CNTs-T were prepared by impregnation-chemical reduction method. The catalysts were characterized by TEM,ICP,XRD,BET and CO chemisorption,and studied in the acetylene selective hydrogenation. The results show that homogeneous Ni-B amorphous particles with mean size about 10 nm are successfully prepared on CNTs-T. Compared with Ni-B/CNTs,nickel loading of Ni-B/CNTs-T is increased by about 14.6%. Furthermore,the activity and selectivity of Ni-B/CNTs-T are much higher than those of Ni-B/CNTs in the acetylene selective hydrogenation under comparative condition.展开更多
The behaviour of hydrogen permeation and diffusion in amorphous alloy Ni68Cr7Si8B14Fe3 hasbeen investigated by an ultrahigh vacuum gas permeation technique. A comparison experimentwas carried out between the as-quench...The behaviour of hydrogen permeation and diffusion in amorphous alloy Ni68Cr7Si8B14Fe3 hasbeen investigated by an ultrahigh vacuum gas permeation technique. A comparison experimentwas carried out between the as-quenched and annealed States (400℃/2h) of the amorphousalloy. The results show that, for both states of the amorphous alloy in the temperature rangeof 200~350℃, the diffusivity and permeability of hydrogen are in agreement with Arrheniusrelationship, there does not exist H-trapping effect, and the activation energies of diffusion andpermeation almost keep the same.展开更多
Amorphous Ni B/γ Al 2O 3 catalyst 1 is prepared with chemical reduction by KBH 4 solution after wetness impregnation and desiccation at 70 ℃ first and then at 110 ℃ for thorough water removal. Its higher catalytic ...Amorphous Ni B/γ Al 2O 3 catalyst 1 is prepared with chemical reduction by KBH 4 solution after wetness impregnation and desiccation at 70 ℃ first and then at 110 ℃ for thorough water removal. Its higher catalytic activity than amorphous Ni B/γ Al 2O 3 catalyst 2, prepared by conventional one step desiccation procedure at 110 ℃, is identified in liquid phase benzene hydrogenation to cyclohexane. Both catalysts are characterized by XRD and SEM, Ni B/γ Al 2O 3 catalyst 1 has a higher active specific surface area and dispersion degree, which can be assigned to more effective distribution of nickel salt over the support during desiccation, thus resulting in its superior activity in benzene hydrogenation.展开更多
文摘A series of Ce-doped Ni-B amorphous alloy catalysts were prepared by a KBH_4 reduction method, characterized by ICP, BET, XRD, H_2-chemisorption, H_2-TPD, etc., and tested in the hydrogenation of 2-ethylanthraquinone. The results of characterization show that with the addition of Ce the amount of H_2-chemisorption and H_2-TPD areas first increases markedly and then decreases with the maximum appears at the atomic ratio of Ce to Ni of 0.036. The hydrogenation activity also shows the same trend. The effects of Ce are attributed to its dispersion of Ni particles, resulting in the formation of more surface Ni centers. However, much higher Ce contents may result in the decrease of the surface Ni contents. After heat treatment at higher temperatures, the amorphous structure of Ni-B is destroyed.
基金University of Science and Technology Liaoning Research Project (No. 2003001)
文摘In the present paper, one hundred cluster models NinBP (n = 1-6) have been designed and studied by density functional theory (DFT) to get an insight into the local structure, catalytic properties and sulfur resistibility of amorphous alloy Ni-B-P. The configurations in triplet state are found more stable than those in the singlet state. It is found: that as the content of Ni in the clusters increases, the value of Fermi level in clusters fluctuated, which shows that the content of Ni can influence the Fermi level to a certain extent. Based on the Fermi level and DOS, we consider the activity of catalyst in hydrogenation reaction is the best in cluster Ni3BP. On the basis of the charge of clusters NinBP (n = 1 -6), we conclude the amorphous alloy Ni-B-P with high Ni content has better sulfur resistibility and the best hydrogenation activity, strong sulfur resistibility appears in clusters Ni3BP, and the amorphous alloy Ni60B20P20 with similar proportion is expected to prepare in the future.
基金The National Natural Science Foundation of China(No.20263003)supported this work.
文摘Uniform Ni-B amorphous alloys about 14 nm have been prepared on CNTs-A support,named Ni-B/CNTs-A. In comparison with the Ni-B/CNTs amorphous catalyst, Ni-B/CNTs-A showed higher nickel loading, determined by ICP and better catalytic activity and ethylene selectivity in the acetylene hydrogenation reaction.
基金Project (20263003) supported by the National Natural Science Foundation of China
文摘Heat treatment of carbon nanotubes(CNTs) was carried out under ammonia atmosphere and then CNTs were modified by Triton x-100(CNTs-T). Ni-B amorphous alloy catalysts supported on CNTs and CNTs-T were prepared by impregnation-chemical reduction method. The catalysts were characterized by TEM,ICP,XRD,BET and CO chemisorption,and studied in the acetylene selective hydrogenation. The results show that homogeneous Ni-B amorphous particles with mean size about 10 nm are successfully prepared on CNTs-T. Compared with Ni-B/CNTs,nickel loading of Ni-B/CNTs-T is increased by about 14.6%. Furthermore,the activity and selectivity of Ni-B/CNTs-T are much higher than those of Ni-B/CNTs in the acetylene selective hydrogenation under comparative condition.
文摘The behaviour of hydrogen permeation and diffusion in amorphous alloy Ni68Cr7Si8B14Fe3 hasbeen investigated by an ultrahigh vacuum gas permeation technique. A comparison experimentwas carried out between the as-quenched and annealed States (400℃/2h) of the amorphousalloy. The results show that, for both states of the amorphous alloy in the temperature rangeof 200~350℃, the diffusivity and permeability of hydrogen are in agreement with Arrheniusrelationship, there does not exist H-trapping effect, and the activation energies of diffusion andpermeation almost keep the same.
文摘Amorphous Ni B/γ Al 2O 3 catalyst 1 is prepared with chemical reduction by KBH 4 solution after wetness impregnation and desiccation at 70 ℃ first and then at 110 ℃ for thorough water removal. Its higher catalytic activity than amorphous Ni B/γ Al 2O 3 catalyst 2, prepared by conventional one step desiccation procedure at 110 ℃, is identified in liquid phase benzene hydrogenation to cyclohexane. Both catalysts are characterized by XRD and SEM, Ni B/γ Al 2O 3 catalyst 1 has a higher active specific surface area and dispersion degree, which can be assigned to more effective distribution of nickel salt over the support during desiccation, thus resulting in its superior activity in benzene hydrogenation.