Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries.Herein,we report a unique silicon-carbon composite fabricated by unifor...Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries.Herein,we report a unique silicon-carbon composite fabricated by uniformly dis-persing amorphous Si nanodots(SiNDs)in carbon nanospheres(SiNDs/C)that are welded on the wall of the macroporous carbon framework(MPCF)by vertical graphene(VG),labeled as MPCF@VG@SiNDs/C.The high dispersity and amor-phous features of ultrasmall SiNDs(~0.7 nm),the flexible and directed electron/Li+transport channels of VG,and the MPCF impart the MPCF@VG@SiNDs/C more lithium storage sites,rapid Li+transport path,and unique low-strain property during Li+storage.Consequently,the MPCF@VG@SiNDs/C exhibits high cycle stability(1301.4 mAh g^(-1) at 1 A g^(-1) after 1000 cycles without apparent decay)and high rate capacity(910.3 mAh g^(-1),20 A g^(-1))in half cells based on industrial electrode standards.The assembled pouch full cell delivers a high energy density(1694.0 Wh L^(-1);602.8 Wh kg^(-1))and an excellent fast-charging capability(498.5 Wh kg^(-1),charging for 16.8 min at 3 C).This study opens new possibilities for preparing advanced silicon-carbon com-posite anodes for practical applications.展开更多
Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets ...Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.展开更多
Thermal expansion behaviors of some precursor-derived amorphous Si-C-N and Si-B-C-N ceramics, which were shaped by plastic forming after crosslink, were studied. To complete the shrinkage and densification, after ther...Thermal expansion behaviors of some precursor-derived amorphous Si-C-N and Si-B-C-N ceramics, which were shaped by plastic forming after crosslink, were studied. To complete the shrinkage and densification, after thermolysis specimens were heat treated at a temperature of 1400℃ for 10 h in nitrogen atmosphere. The thermal expansion coefficient of VT50-derived amorphous Si-C-N ceramic increases from 1.98×10-6/K at 400℃ to 3.09×10-6/K at 1000℃, of NCP200-derived amorphous Si-C-N ceramic increases from 2.35×10-6/K at 400℃ to 3.45×10-6/K at 1000℃, and of T2-l-derived amorphous Si-B-C-N ceramic increases from 2.08×10-6/K at 400℃ to 3.18×10-6/K at 1000℃. No glass transition for these amorphous ceramic materials was detected, indicating that as-thermolyzed precursor-derived Si-(B-)C-N ceramic materials are amorphous solids, but not glasses.展开更多
Interfacial adhesion between carbon fibers(CF)and polyetherketoneketone(PEKK)is a key factor that affects the mechanical performances of their composites.It is therefore of great importance to impregnate the CF bundle...Interfacial adhesion between carbon fibers(CF)and polyetherketoneketone(PEKK)is a key factor that affects the mechanical performances of their composites.It is therefore of great importance to impregnate the CF bundles with PEKK as effi-ciently as possible.We report that PEKK with a good dispersion in a mixed solution of 4-chlorophenol and 1,2-dichloroethane can be introduced onto CF surfaces by solution impregnation and curing at 280,320,340 and 360℃.The excellent wettability or infiltra-tion of the PEKK solution guarantees a full covering and its tight binding to CFs,making it possible to evaluate the interfacial shear strength(IFSS)with the microdroplet method.The interior of the CF bundles is completely and uniformly filled with PEKK by solu-tion impregnation,leading to a high interlaminar shear strength(ILSS).The maximum IFSS and ILSS reached 107.8 and 99.3 MPa,respectively.Such superior shear properties are ascribed to the formation of amorphous PEKK in the small spaces between CFs.展开更多
Single-atom(SA)catalysts with nearly 100%atom utilization have been widely employed in electrolysis for decades,due to the outperforming catalytic activity and selectivity.However,most of the reported SA catalysts are...Single-atom(SA)catalysts with nearly 100%atom utilization have been widely employed in electrolysis for decades,due to the outperforming catalytic activity and selectivity.However,most of the reported SA catalysts are fixed through the strong bonding between the dispersed single metallic atoms with nonmetallic atoms of the substrates,which greatly limits the controllable regulation of electrocatalytic activity of SA catalysts.In this work,Pt-Ni bonded Pt SA catalyst with adjustable electronic states was successfully constructed through a controllable electrochemical reduction on the coordination unsaturated amorphous Ni(OH)_(2)nanosheet arrays.Based on the X-ray absorption fine structure analysis and first-principles calculations,Pt SA was bonded with Ni sites of amorphous Ni(OH)_(2),rather than conventional O sites,resulting in negatively charged Pt^(δ-).In situ Raman spectroscopy revealed that the changed configuration and electronic states greatly enhanced absorbability for activated hydrogen atoms,which were the essential intermediate for alkaline hydrogen evolution reaction.The hydrogen spillover process was revealed from amorphous Ni(OH)_(2)that effectively cleave the H-O-H bond of H_(2)O and produce H atom to the Pt SA sites,leading to a low overpotential of 48 mV in alkaline electrolyte at-1000 mA cm^(-2)mg^(-1)_(Pt),evidently better than commercial Pt/C catalysts.This work provided new strategy for the control-lable modulation of the local structure of SA catalysts and the systematic regulation of the electronic states.展开更多
Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst onl...Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2) product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst.展开更多
Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problem...Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problems like difficulty in preparation and poor cycling stability need to be solved.At present,Mg-based amorphous alloys applied in wastewater degradation are available in powder and ribbon.The amorphous alloy powder fabricated by ball milling has a high specific surface area,and its reactivity is thousands of times better than that of gas atomized alloy powder.But the development is limited due to the high energy consumption,difficult and costly process of powder recycling.The single roller melt-spinning method is a new manufacturing process of amorphous alloy ribbon.Compared to amorphous powder,the specific surface area of amorphous ribbon is relatively lower,therefore,it is necessary to carry out surface modification to enhance it.Dealloying is a way that can form a pore structure on the surface of the amorphous alloys,increasing the specific surface area and providing more reactive sites,which all contribute to the catalytic performance.Exploring the optimal conditions for Mg-based amorphous alloys in wastewater degradation by adjusting amorphous alloy composition,choosing suitable method to preparation and surface modification,reducing cost,expanding the pH range will advance the steps to put Mg-based amorphous alloys in industrial environments into practice.展开更多
An a-C/a-C:N junction,which used palmyra sugar as the carbon source and ammonium hydroxide(NH4OH)as the dopant source,was successfully deposited on the ITO glass substrate using the nano-spraying method.The current-vo...An a-C/a-C:N junction,which used palmyra sugar as the carbon source and ammonium hydroxide(NH4OH)as the dopant source,was successfully deposited on the ITO glass substrate using the nano-spraying method.The current-voltage relationship of the junction was found to be a Schottky-like contact,and therefore the junction shows the characteristic rectifiers.This means the a-C and a-C:N are semiconductors with different types of conduction.Moreover,the samples showed an increase in current and voltage value when exposed to visible light(bright state)compared to the dark condition,thereby,indicating the creation of electron-hole pairs during the exposure.It was also discovered that the relationship between current and voltage for the a-C/a-C:N junction sample formed a curve that satisfies the rule of the photovoltaic effect when exposed to visible light from a light bulb.The exposure of this sample to direct sunlight at AM 1.5 conditions produced a curve that meets the rules for the emergence of the photovoltaic effect with higher characteristics for the current-voltage relationship.Thus,the a-C/a-C:N junction sample is a solar cell successfully fabricated using a sample method and has a maximum efficiency of 0.0013%.展开更多
With the growing concern about the water environment,the advanced oxidation process of persulfate activation assisted by photocatalysis has attracted considerable attention to decompose dissolved organic micropollutan...With the growing concern about the water environment,the advanced oxidation process of persulfate activation assisted by photocatalysis has attracted considerable attention to decompose dissolved organic micropollutants.In this work,to overcome the drawbacks of the photocatalytic activity reduction caused by the photo-corrosion of non-stoichiometric BiO_(2–x),a novel material with amorphous FeOOH in situ grown on layered BiO_(2–x) to form a core-shell structure similar to popcorn chicken-like morphology was produced in two simple and environmentally beneficial steps.Through a series of degradation activity tests of hybrid materials under different conditions,the as-prepared materials exhibited remarkable degradation activity and stability toward tetracycline in the FeOOH@BiO_(2–x)/Vis/PS system due to the synergism of photocatalysis and persulfate activation.The results of XRD,SEM,TEM,XPS,FTIR,and BET show that the loading of FeOOH increases the specific surface area and active sites appreciably;the heterogeneous structure formed by FeOOH and BiO_(2–x) is more favorable to the effective separation of photogenerated carriers.The optimal degradation conditions were at a catalyst addition of 0.7 g·L^(–1),a persulfate concentration of 1.0 g·L^(–1),and an initial pH of 4.5,at which the degradation rate could reach 94.7%after 90 min.The influence of typical inorganic anions on degradation was also examined.ESR studies and radical quenching experiments revealed that·OH,SO_(4)^(-)·,and·O_(2)^(-)were the principal active species generated during the degradation of tetracycline.The results of the 1,10-phenanthroline approach proved that the effect of dissolved iron ions on the tetracycline degradation was limited,and the interfacial reaction that occurs on the active sites on the material's surface was a critical factor.This work provides a novel method for producing efficient broad-spectrum Bismuth-based composite photocatalysts and photocatalytic-activated persulfate synergistic degradation of tetracycline.展开更多
Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily s...Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.展开更多
Modulation of Si-O bonds under mild conditions has been a challenging issue in the field of material science,which is critical to manufacture highperformance silica-based optical and photonic devices.Herein,we introdu...Modulation of Si-O bonds under mild conditions has been a challenging issue in the field of material science,which is critical to manufacture highperformance silica-based optical and photonic devices.Herein,we introduce a nondestructive technique to achieve Si-O bond rearrangement,leading to plastic deformation and photoluminescence enhancement of amorphous silica nanoparticles using supercritical carbon dioxides in EtOH/H_(2)O solution under mild temperature.Specifically,plastic deformation is achieved by treating hollow mesoporous silica nanospheres using supercritical CO_(2)at 40°C under 20 MPa.Experimental and theoretical studies revealed the critical role of supercritical CO_(2)in the plastic deformation process,which can be intercalated into the hollow mesoporous silica nanospheres with anisotropic stresses and induces the rearrangement of Si-O bonds and transformation of ring structures.This work suggests a novel approach to engineer high-performance nano-silica glass components for numerous optical and photonic devices under mild condition.展开更多
Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the s...Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the structural origin of anelasticity and its distinction from plasticity remain elusive. In this work, using frozen matrix method, we study the transition from anelasticity to plasticity in a two-dimensional model glass. Three distinct mechanical behaviors, namely,elasticity, anelasticity, and plasticity, are identified with control parameters in the amorphous solid. Through the study of finite size effects on these mechanical behaviors, it is revealed that anelasticity can be distinguished from plasticity.Anelasticity serves as an intrinsic bridge connecting the elasticity and plasticity of amorphous solids. Additionally, it is observed that anelastic events are localized, while plastic events are subextensive. The transition from anelasticity to plasticity is found to resemble the entanglement of long-range interactions between element excitations. This study sheds light on the fundamental nature of anelasticity as a key property of element excitations in amorphous solids.展开更多
Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer w...Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer which fabricated via two-step electrodeposition achieves stable formate output in a wide voltage window of 600 mV.The Faraday efficiency(FE) of formate reached up to 99.4% at-0.8 V vs.RHE and it remained constant for more than 92 h at-15 mA cm^(-2).More intriguingly,FE formate of95.4% can be realized at a current density of industrial grade(-667.7 mA cm^(-2)) in flow cell.The special structure promoted CO_(2) adsorption and reduced its activation energy and enhanced the electric-thermal field and K^(+) enrichment which accelerated the reaction kinetics.In situ spectroscopy and theoretical calculation further confirmed that the introduction of amorphous structure is beneficial to adsorpting CO_(2)and stabling*OCHO intermediate.This work provides special insights to fabricate efficient electrocatalysts by means of structural and crystal engineering and makes efforts to realize the industrialization of bismuth-based catalysts.展开更多
Compared to organic-inorganic hybrid perovskites,the cesium-based allinorganic lead halide perovskite(CsPbI_(3))is a promising light absorber for perovskite solar cells owing to its higher resistance to thermal stress...Compared to organic-inorganic hybrid perovskites,the cesium-based allinorganic lead halide perovskite(CsPbI_(3))is a promising light absorber for perovskite solar cells owing to its higher resistance to thermal stress.Nonetheless,additional research is required to reduce the nonradiative recombination to realize the full potential of CsPbI_(3).Here,the diffusion of Cs ions participating in ion exchange is proposed to be an important factor responsible for the bulk defects inγ-CsPbI_(3)perovskite.Calculations based on first-principles density functional theory reveal that the[PbI_(6)]^(4-)octahedral tilt modifies the perovskite crystallographic properties inγ-CsPbI_(3),leading to alterations in its bandgap and crystal strain.In addition,by substituting amorphous barium titanium oxide(a-BaTiO_(3))for TiO_(2)as the electron transport layer,interfacial defects caused by imperfect energy levels between the electron transport layer and perovskite are reduced.High-resolution transmission electron microscopy and electron energy loss spectroscopy demonstrate that a-BaTiO_(3)forms entirely as a single phase,as opposed to Ba-doped TiO_(2)hybrid nanoclusters or separate domains of TiO_(2)and BaTiO_(3)phases.Accordingly,inorganic perovskite solar cells based on the a-BaTiO_(3)electron transport layer achieved a power conversion efficiency of 19.96%.展开更多
Manganese-based oxide electrode materials suffer from severe Jahn-Teller(J-T)distortion,leading to severe cycle instability in sodium ion storage.However,it is difficult to adjust the electron at d orbitals exactly to...Manganese-based oxide electrode materials suffer from severe Jahn-Teller(J-T)distortion,leading to severe cycle instability in sodium ion storage.However,it is difficult to adjust the electron at d orbitals exactly to a low spin state to eliminate orbital degeneracy and suppress J-T distortion fundamentally.This article constructed concentration-controllable Mn/O coupled vacancy and amorphous network in Mn_(3)O_(4) and coated it with nitrogen-doped carbon aerogel(Mn_(3-x)O_(4-y)@NCA).The existence of Mn/O vacancies has been confirmed by scanning transmission electron microscopy(STEM)and positron annihilation lifetime spectroscopy(PALS).Atomic absorption spectroscopy(AAS)and X-ray photoelectron spectroscopy(XPS)determine the most optimal ratio of Mn/O vacancies for sodium ion storage is 1:2.Density functional theory(DFT)calculations prove that Mn/O coupled vacancies with the ratio of 1:2could exactly induce a low spin states and a d~4 electron configuration of Mn,suppressing the J-T distortion successfully.The abundant amorphous regions can shorten the transport distance of sodium ions,increase the electrochemically active sites and improve the pseudocapacitance response.From the synergetic effect of Mn/O coupled vacancies and amorphous regions,Mn_(3-x)O_(4-y)@NCA exhibits an energy density of 37.5 W h kg^(-1)and an ultra-high power density of 563 W kg^(-1)in an asymmetric supercapacitor.In sodium-ion batteries,it demonstrates high reversible capacity and exceptional cycling stability.This research presents a new method to improve the Na^(+)storage performance in manganese-based oxide,which is expected to be generalized to other structural distortion.展开更多
To date,there is still a lack of a comprehensive explanation for caged dynamics which is regarded as one of the intricate dynamic behaviors in amorphous alloys.This study focuses on Pd_(82)Si_(18)as the research objec...To date,there is still a lack of a comprehensive explanation for caged dynamics which is regarded as one of the intricate dynamic behaviors in amorphous alloys.This study focuses on Pd_(82)Si_(18)as the research object to further elucidate the underlying mechanism of caged dynamics from multiple perspectives,including the cage's lifetime,atomic local environment,and atomic potential energy.The results reveal that Si atoms exhibit a pronounced cage effect due to the hindrance of Pd atoms,resulting in an anomalous peak in the non-Gaussian parameters.An in-depth investigation was conducted on the caged dynamics differences between fast and slow Si atoms.In comparison to fast Si atoms,slow Si atoms were surrounded by more Pd atoms and occupied lower potential energy states,resulting in smaller diffusion displacements for the slow Si atoms.Concurrently,slow Si atoms tend to be in the centers of smaller clusters with coordination numbers of 9 and 10.During the isothermal relaxation process,clusters with coordination numbers 9 and 10 have longer lifetimes,suggesting that the escape of slow Si atoms from their cages is more challenging.The findings mentioned above hold significant implications for understanding the caged dynamics.展开更多
The as-cast amorphous Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)composites,comprising in situ formedβ-Ti ductile crystalline precipitates,were prepared by water cooled copper mold suction casting.Then,the semi-solid composite...The as-cast amorphous Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)composites,comprising in situ formedβ-Ti ductile crystalline precipitates,were prepared by water cooled copper mold suction casting.Then,the semi-solid composites were obtained after the as-cast composites were treated by semi-solid isothermal treatment.The microstructure evolution and kinetics of the composites were examined.Results show that the microstructures of both the as-cast and semi-solid composites comprise ofβ-Ti crystal phases and amorphous matrix phases.Before and after treatment,the crystals evolve from fine granular or fine dendritic crystals to coarse crystals.As the treatment temperature increasing or the time prolonging,the average crystal size gradually increases and the surface morphology of the crystals gradually becomes regular.By studying the microstructural evolution and dynamics during the isothermal treatment process,it is found that the final morphology ofβ-Ti crystals is influenced by the isothermal treatment temperature and time(t),and theβ-Ti evolution rate increases with an increase in treatment temperature.In addition,a linear relationship was observed between the size of cubicβ-Ti crystals(D^(3))and t;the growth kinetics factor K is 3.8μm^(3)·s^(-1).As the K value closes to 4μm^(3)·s^(-1),it is inferred the morphology evolution ofβ-Ti crystals is a coarsening behavior controlled by the diffusion of solute elements.展开更多
Based on the local canning compression,severe plastic deformation(SPD) is able to lead to the almost complete amorphous nickel-titanium shape memory alloy(NiTi SMA),in which a small amount of retained nanocrystall...Based on the local canning compression,severe plastic deformation(SPD) is able to lead to the almost complete amorphous nickel-titanium shape memory alloy(NiTi SMA),in which a small amount of retained nanocrystalline phase is embedded in the amorphous matrix.Crystallization of amorphous NiTi alloy annealed at 573,723 and 873 K was investigated,respectively.The crystallization kinetics of the amorphous NiTi alloy can be mathematically described by the Johnson-MehlAvrami-Kolmogorov(JMAK) equation.NiTi SMA with a complete nanocrystalline phase is obtained in the case of annealing at 573 K and 723 K,where martensite phase transformation is suppressed due to the constraint of the grain boundaries.Crystallization of amorphous NiTi alloy at 873 K leads to the coarse-grained NiTi sample,where(001) martensite compound twin is observed at room temperature.It can be found that the martensitic twins preferentially nucleate at the grain boundary and they grow up towards the two different grains.SPD based on the local canning compression and subsequent annealing provides a new approach to obtain the nanocrystalline NiTi SMA.展开更多
基金All authors acknowledge fund support from Guangdong Basic and Applied Basic Research Foundation(2020A1515110762)National Natural Science Foundation of China(52172084).
文摘Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries.Herein,we report a unique silicon-carbon composite fabricated by uniformly dis-persing amorphous Si nanodots(SiNDs)in carbon nanospheres(SiNDs/C)that are welded on the wall of the macroporous carbon framework(MPCF)by vertical graphene(VG),labeled as MPCF@VG@SiNDs/C.The high dispersity and amor-phous features of ultrasmall SiNDs(~0.7 nm),the flexible and directed electron/Li+transport channels of VG,and the MPCF impart the MPCF@VG@SiNDs/C more lithium storage sites,rapid Li+transport path,and unique low-strain property during Li+storage.Consequently,the MPCF@VG@SiNDs/C exhibits high cycle stability(1301.4 mAh g^(-1) at 1 A g^(-1) after 1000 cycles without apparent decay)and high rate capacity(910.3 mAh g^(-1),20 A g^(-1))in half cells based on industrial electrode standards.The assembled pouch full cell delivers a high energy density(1694.0 Wh L^(-1);602.8 Wh kg^(-1))and an excellent fast-charging capability(498.5 Wh kg^(-1),charging for 16.8 min at 3 C).This study opens new possibilities for preparing advanced silicon-carbon com-posite anodes for practical applications.
基金the funding from Natural Science Foundation of China(No.52003163)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010670)+1 种基金Science and Technology Innovation Commission of Shenzhen(Nos.KQTD20170810105439418 and 20200812112006001)NTUT-SZU Joint Research Program(Nos.2022005 and 2022015)
文摘Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.
文摘Thermal expansion behaviors of some precursor-derived amorphous Si-C-N and Si-B-C-N ceramics, which were shaped by plastic forming after crosslink, were studied. To complete the shrinkage and densification, after thermolysis specimens were heat treated at a temperature of 1400℃ for 10 h in nitrogen atmosphere. The thermal expansion coefficient of VT50-derived amorphous Si-C-N ceramic increases from 1.98×10-6/K at 400℃ to 3.09×10-6/K at 1000℃, of NCP200-derived amorphous Si-C-N ceramic increases from 2.35×10-6/K at 400℃ to 3.45×10-6/K at 1000℃, and of T2-l-derived amorphous Si-B-C-N ceramic increases from 2.08×10-6/K at 400℃ to 3.18×10-6/K at 1000℃. No glass transition for these amorphous ceramic materials was detected, indicating that as-thermolyzed precursor-derived Si-(B-)C-N ceramic materials are amorphous solids, but not glasses.
文摘Interfacial adhesion between carbon fibers(CF)and polyetherketoneketone(PEKK)is a key factor that affects the mechanical performances of their composites.It is therefore of great importance to impregnate the CF bundles with PEKK as effi-ciently as possible.We report that PEKK with a good dispersion in a mixed solution of 4-chlorophenol and 1,2-dichloroethane can be introduced onto CF surfaces by solution impregnation and curing at 280,320,340 and 360℃.The excellent wettability or infiltra-tion of the PEKK solution guarantees a full covering and its tight binding to CFs,making it possible to evaluate the interfacial shear strength(IFSS)with the microdroplet method.The interior of the CF bundles is completely and uniformly filled with PEKK by solu-tion impregnation,leading to a high interlaminar shear strength(ILSS).The maximum IFSS and ILSS reached 107.8 and 99.3 MPa,respectively.Such superior shear properties are ascribed to the formation of amorphous PEKK in the small spaces between CFs.
基金supported by National Natural Science Foundation of China(52373221,U1910208,52250119)the National Key R&D Program of China(2020YFA0710403)the Scientific Research Fund of Hunan Provincial Education Department(NO.23B0114).
文摘Single-atom(SA)catalysts with nearly 100%atom utilization have been widely employed in electrolysis for decades,due to the outperforming catalytic activity and selectivity.However,most of the reported SA catalysts are fixed through the strong bonding between the dispersed single metallic atoms with nonmetallic atoms of the substrates,which greatly limits the controllable regulation of electrocatalytic activity of SA catalysts.In this work,Pt-Ni bonded Pt SA catalyst with adjustable electronic states was successfully constructed through a controllable electrochemical reduction on the coordination unsaturated amorphous Ni(OH)_(2)nanosheet arrays.Based on the X-ray absorption fine structure analysis and first-principles calculations,Pt SA was bonded with Ni sites of amorphous Ni(OH)_(2),rather than conventional O sites,resulting in negatively charged Pt^(δ-).In situ Raman spectroscopy revealed that the changed configuration and electronic states greatly enhanced absorbability for activated hydrogen atoms,which were the essential intermediate for alkaline hydrogen evolution reaction.The hydrogen spillover process was revealed from amorphous Ni(OH)_(2)that effectively cleave the H-O-H bond of H_(2)O and produce H atom to the Pt SA sites,leading to a low overpotential of 48 mV in alkaline electrolyte at-1000 mA cm^(-2)mg^(-1)_(Pt),evidently better than commercial Pt/C catalysts.This work provided new strategy for the control-lable modulation of the local structure of SA catalysts and the systematic regulation of the electronic states.
文摘Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2) product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst.
基金supported by the National Natural Science Foundation of China(Grant No.52071276)the Natural Science Foundation of Chongqing,China(Grant No.CSTB2022NSCQ-MSX0440)the Fundamental Research Funds for the Central Universities(Grant No.SWUXDJH202313,SWU-KQ22083).
文摘Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problems like difficulty in preparation and poor cycling stability need to be solved.At present,Mg-based amorphous alloys applied in wastewater degradation are available in powder and ribbon.The amorphous alloy powder fabricated by ball milling has a high specific surface area,and its reactivity is thousands of times better than that of gas atomized alloy powder.But the development is limited due to the high energy consumption,difficult and costly process of powder recycling.The single roller melt-spinning method is a new manufacturing process of amorphous alloy ribbon.Compared to amorphous powder,the specific surface area of amorphous ribbon is relatively lower,therefore,it is necessary to carry out surface modification to enhance it.Dealloying is a way that can form a pore structure on the surface of the amorphous alloys,increasing the specific surface area and providing more reactive sites,which all contribute to the catalytic performance.Exploring the optimal conditions for Mg-based amorphous alloys in wastewater degradation by adjusting amorphous alloy composition,choosing suitable method to preparation and surface modification,reducing cost,expanding the pH range will advance the steps to put Mg-based amorphous alloys in industrial environments into practice.
基金funded by the University of Muhammadiyah Malang through a doctoral scientific work development program and also by theMinistry of Finance of Indonesia through the LPDP BUDI-DN scholarship(BP),and National Competitive Fundamental Research Grant(Hibah Penelitian Dasar),Kemendikbudristek,2021–2022(D).
文摘An a-C/a-C:N junction,which used palmyra sugar as the carbon source and ammonium hydroxide(NH4OH)as the dopant source,was successfully deposited on the ITO glass substrate using the nano-spraying method.The current-voltage relationship of the junction was found to be a Schottky-like contact,and therefore the junction shows the characteristic rectifiers.This means the a-C and a-C:N are semiconductors with different types of conduction.Moreover,the samples showed an increase in current and voltage value when exposed to visible light(bright state)compared to the dark condition,thereby,indicating the creation of electron-hole pairs during the exposure.It was also discovered that the relationship between current and voltage for the a-C/a-C:N junction sample formed a curve that satisfies the rule of the photovoltaic effect when exposed to visible light from a light bulb.The exposure of this sample to direct sunlight at AM 1.5 conditions produced a curve that meets the rules for the emergence of the photovoltaic effect with higher characteristics for the current-voltage relationship.Thus,the a-C/a-C:N junction sample is a solar cell successfully fabricated using a sample method and has a maximum efficiency of 0.0013%.
基金supported by the National Key Research and Development Program of China(2019YFC1904100)the National Natural Science Foundation of China(21503144)+3 种基金the Science and Technology Innovation Project for Students of Hebei Province(22E50174D)the Science and Technology Project of Hebei Education Department(QN2021047)the Program of Hebei Vocational University of Industry and Technology(dxs202207,ZY202401)the Key Program of Natural Science of Hebei Province(B2020209017).
文摘With the growing concern about the water environment,the advanced oxidation process of persulfate activation assisted by photocatalysis has attracted considerable attention to decompose dissolved organic micropollutants.In this work,to overcome the drawbacks of the photocatalytic activity reduction caused by the photo-corrosion of non-stoichiometric BiO_(2–x),a novel material with amorphous FeOOH in situ grown on layered BiO_(2–x) to form a core-shell structure similar to popcorn chicken-like morphology was produced in two simple and environmentally beneficial steps.Through a series of degradation activity tests of hybrid materials under different conditions,the as-prepared materials exhibited remarkable degradation activity and stability toward tetracycline in the FeOOH@BiO_(2–x)/Vis/PS system due to the synergism of photocatalysis and persulfate activation.The results of XRD,SEM,TEM,XPS,FTIR,and BET show that the loading of FeOOH increases the specific surface area and active sites appreciably;the heterogeneous structure formed by FeOOH and BiO_(2–x) is more favorable to the effective separation of photogenerated carriers.The optimal degradation conditions were at a catalyst addition of 0.7 g·L^(–1),a persulfate concentration of 1.0 g·L^(–1),and an initial pH of 4.5,at which the degradation rate could reach 94.7%after 90 min.The influence of typical inorganic anions on degradation was also examined.ESR studies and radical quenching experiments revealed that·OH,SO_(4)^(-)·,and·O_(2)^(-)were the principal active species generated during the degradation of tetracycline.The results of the 1,10-phenanthroline approach proved that the effect of dissolved iron ions on the tetracycline degradation was limited,and the interfacial reaction that occurs on the active sites on the material's surface was a critical factor.This work provides a novel method for producing efficient broad-spectrum Bismuth-based composite photocatalysts and photocatalytic-activated persulfate synergistic degradation of tetracycline.
基金the support from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Hydrogen and Fuel Cell Technologies Office Awards DE-EE0008426 and DE-EE0008423National Energy Technology Laboratory under Award DEFE0011585.
文摘Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.
基金the National Natural Science Foundation of China(Nos.51173170,21703207,21773216)the joint project from the Henan-Provincial and the China-National Natural Science Foundations(Project No.U2004208)
文摘Modulation of Si-O bonds under mild conditions has been a challenging issue in the field of material science,which is critical to manufacture highperformance silica-based optical and photonic devices.Herein,we introduce a nondestructive technique to achieve Si-O bond rearrangement,leading to plastic deformation and photoluminescence enhancement of amorphous silica nanoparticles using supercritical carbon dioxides in EtOH/H_(2)O solution under mild temperature.Specifically,plastic deformation is achieved by treating hollow mesoporous silica nanospheres using supercritical CO_(2)at 40°C under 20 MPa.Experimental and theoretical studies revealed the critical role of supercritical CO_(2)in the plastic deformation process,which can be intercalated into the hollow mesoporous silica nanospheres with anisotropic stresses and induces the rearrangement of Si-O bonds and transformation of ring structures.This work suggests a novel approach to engineer high-performance nano-silica glass components for numerous optical and photonic devices under mild condition.
基金Project supported by Guangdong Major Project of Basic and Applied Basic Research,China (Grant No.2019B030302010)the National Natural Science Foundation of China (Grant No.52130108)+1 种基金Guangdong Basic and Applied Basic Research,China (Grant No.2021B1515140005)Pearl River Talent Recruitment Program (Grant No.2021QN02C04)。
文摘Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the structural origin of anelasticity and its distinction from plasticity remain elusive. In this work, using frozen matrix method, we study the transition from anelasticity to plasticity in a two-dimensional model glass. Three distinct mechanical behaviors, namely,elasticity, anelasticity, and plasticity, are identified with control parameters in the amorphous solid. Through the study of finite size effects on these mechanical behaviors, it is revealed that anelasticity can be distinguished from plasticity.Anelasticity serves as an intrinsic bridge connecting the elasticity and plasticity of amorphous solids. Additionally, it is observed that anelastic events are localized, while plastic events are subextensive. The transition from anelasticity to plasticity is found to resemble the entanglement of long-range interactions between element excitations. This study sheds light on the fundamental nature of anelasticity as a key property of element excitations in amorphous solids.
基金financial support from the Zhejiang Provincial Natural Science Foundation of China(LQ22B060007)the National Natural Science Foundation of China(22206042)+2 种基金the Scientific Research Start-up of Hangzhou Normal University(2021GDL014)the Hebei Natural Science Foundation(E2021203047)the Hebei Provincial Foundation for Returness(C20200369)。
文摘Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer which fabricated via two-step electrodeposition achieves stable formate output in a wide voltage window of 600 mV.The Faraday efficiency(FE) of formate reached up to 99.4% at-0.8 V vs.RHE and it remained constant for more than 92 h at-15 mA cm^(-2).More intriguingly,FE formate of95.4% can be realized at a current density of industrial grade(-667.7 mA cm^(-2)) in flow cell.The special structure promoted CO_(2) adsorption and reduced its activation energy and enhanced the electric-thermal field and K^(+) enrichment which accelerated the reaction kinetics.In situ spectroscopy and theoretical calculation further confirmed that the introduction of amorphous structure is beneficial to adsorpting CO_(2)and stabling*OCHO intermediate.This work provides special insights to fabricate efficient electrocatalysts by means of structural and crystal engineering and makes efforts to realize the industrialization of bismuth-based catalysts.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy,Republic of Korea(20213091010020)the Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET)and Korea Smart Farm R&D Foundation(KosFarm)through Smart Farm Innovation Technology Development Programfunded by Ministry of Agriculture,Food and Rural Affairs(MAFRA),Ministry of Science and ICT(MSIT),Rural Development Administration(RDA)(421036-03)
文摘Compared to organic-inorganic hybrid perovskites,the cesium-based allinorganic lead halide perovskite(CsPbI_(3))is a promising light absorber for perovskite solar cells owing to its higher resistance to thermal stress.Nonetheless,additional research is required to reduce the nonradiative recombination to realize the full potential of CsPbI_(3).Here,the diffusion of Cs ions participating in ion exchange is proposed to be an important factor responsible for the bulk defects inγ-CsPbI_(3)perovskite.Calculations based on first-principles density functional theory reveal that the[PbI_(6)]^(4-)octahedral tilt modifies the perovskite crystallographic properties inγ-CsPbI_(3),leading to alterations in its bandgap and crystal strain.In addition,by substituting amorphous barium titanium oxide(a-BaTiO_(3))for TiO_(2)as the electron transport layer,interfacial defects caused by imperfect energy levels between the electron transport layer and perovskite are reduced.High-resolution transmission electron microscopy and electron energy loss spectroscopy demonstrate that a-BaTiO_(3)forms entirely as a single phase,as opposed to Ba-doped TiO_(2)hybrid nanoclusters or separate domains of TiO_(2)and BaTiO_(3)phases.Accordingly,inorganic perovskite solar cells based on the a-BaTiO_(3)electron transport layer achieved a power conversion efficiency of 19.96%.
基金supported by the National Natural Science Foundation of China (22278231,22005165 and 22376110)the Natural Science Foundation Project of Shandong Province (ZR2022MB092 and ZR2023ME098)the Taishan Scholar Program (ts201712030)。
文摘Manganese-based oxide electrode materials suffer from severe Jahn-Teller(J-T)distortion,leading to severe cycle instability in sodium ion storage.However,it is difficult to adjust the electron at d orbitals exactly to a low spin state to eliminate orbital degeneracy and suppress J-T distortion fundamentally.This article constructed concentration-controllable Mn/O coupled vacancy and amorphous network in Mn_(3)O_(4) and coated it with nitrogen-doped carbon aerogel(Mn_(3-x)O_(4-y)@NCA).The existence of Mn/O vacancies has been confirmed by scanning transmission electron microscopy(STEM)and positron annihilation lifetime spectroscopy(PALS).Atomic absorption spectroscopy(AAS)and X-ray photoelectron spectroscopy(XPS)determine the most optimal ratio of Mn/O vacancies for sodium ion storage is 1:2.Density functional theory(DFT)calculations prove that Mn/O coupled vacancies with the ratio of 1:2could exactly induce a low spin states and a d~4 electron configuration of Mn,suppressing the J-T distortion successfully.The abundant amorphous regions can shorten the transport distance of sodium ions,increase the electrochemically active sites and improve the pseudocapacitance response.From the synergetic effect of Mn/O coupled vacancies and amorphous regions,Mn_(3-x)O_(4-y)@NCA exhibits an energy density of 37.5 W h kg^(-1)and an ultra-high power density of 563 W kg^(-1)in an asymmetric supercapacitor.In sodium-ion batteries,it demonstrates high reversible capacity and exceptional cycling stability.This research presents a new method to improve the Na^(+)storage performance in manganese-based oxide,which is expected to be generalized to other structural distortion.
基金Project supported by the National Natural Science Foundation of China (Grant No.51701071)the Natural Science Foundation of Hunan Province,China (Grant Nos.2022JJ50115 and 2021JJ30179)the Research Foundation of the Education Bureau of Hunan Province,China (Grant No.22A0522)。
文摘To date,there is still a lack of a comprehensive explanation for caged dynamics which is regarded as one of the intricate dynamic behaviors in amorphous alloys.This study focuses on Pd_(82)Si_(18)as the research object to further elucidate the underlying mechanism of caged dynamics from multiple perspectives,including the cage's lifetime,atomic local environment,and atomic potential energy.The results reveal that Si atoms exhibit a pronounced cage effect due to the hindrance of Pd atoms,resulting in an anomalous peak in the non-Gaussian parameters.An in-depth investigation was conducted on the caged dynamics differences between fast and slow Si atoms.In comparison to fast Si atoms,slow Si atoms were surrounded by more Pd atoms and occupied lower potential energy states,resulting in smaller diffusion displacements for the slow Si atoms.Concurrently,slow Si atoms tend to be in the centers of smaller clusters with coordination numbers of 9 and 10.During the isothermal relaxation process,clusters with coordination numbers 9 and 10 have longer lifetimes,suggesting that the escape of slow Si atoms from their cages is more challenging.The findings mentioned above hold significant implications for understanding the caged dynamics.
基金supported by the Natural Science Foundation of Hunan Province(No.2023JJ50453)the Science Research Excellent Youth Project of Hunan Educational Department(No.22B0777)+1 种基金the Key Scientific Research Project of Hunan Educational Department(No.22A0551)the Key Scientific Research Projects of Huaihua University(No.HHUY2022-13).
文摘The as-cast amorphous Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)composites,comprising in situ formedβ-Ti ductile crystalline precipitates,were prepared by water cooled copper mold suction casting.Then,the semi-solid composites were obtained after the as-cast composites were treated by semi-solid isothermal treatment.The microstructure evolution and kinetics of the composites were examined.Results show that the microstructures of both the as-cast and semi-solid composites comprise ofβ-Ti crystal phases and amorphous matrix phases.Before and after treatment,the crystals evolve from fine granular or fine dendritic crystals to coarse crystals.As the treatment temperature increasing or the time prolonging,the average crystal size gradually increases and the surface morphology of the crystals gradually becomes regular.By studying the microstructural evolution and dynamics during the isothermal treatment process,it is found that the final morphology ofβ-Ti crystals is influenced by the isothermal treatment temperature and time(t),and theβ-Ti evolution rate increases with an increase in treatment temperature.In addition,a linear relationship was observed between the size of cubicβ-Ti crystals(D^(3))and t;the growth kinetics factor K is 3.8μm^(3)·s^(-1).As the K value closes to 4μm^(3)·s^(-1),it is inferred the morphology evolution ofβ-Ti crystals is a coarsening behavior controlled by the diffusion of solute elements.
基金Project (51071056) supported by the National Natural Science Foundation of ChinaProject (HEUCF201317002) supported by the Fundamental Research Funds for the Central Universities of China
文摘Based on the local canning compression,severe plastic deformation(SPD) is able to lead to the almost complete amorphous nickel-titanium shape memory alloy(NiTi SMA),in which a small amount of retained nanocrystalline phase is embedded in the amorphous matrix.Crystallization of amorphous NiTi alloy annealed at 573,723 and 873 K was investigated,respectively.The crystallization kinetics of the amorphous NiTi alloy can be mathematically described by the Johnson-MehlAvrami-Kolmogorov(JMAK) equation.NiTi SMA with a complete nanocrystalline phase is obtained in the case of annealing at 573 K and 723 K,where martensite phase transformation is suppressed due to the constraint of the grain boundaries.Crystallization of amorphous NiTi alloy at 873 K leads to the coarse-grained NiTi sample,where(001) martensite compound twin is observed at room temperature.It can be found that the martensitic twins preferentially nucleate at the grain boundary and they grow up towards the two different grains.SPD based on the local canning compression and subsequent annealing provides a new approach to obtain the nanocrystalline NiTi SMA.