Charging is one of the most important reliability issues in radio frequency microelectro- mechanical systems (RF MEMS) capacitive switches since it makes the actuation voltage unstable. This paper proposes a hybrid ...Charging is one of the most important reliability issues in radio frequency microelectro- mechanical systems (RF MEMS) capacitive switches since it makes the actuation voltage unstable. This paper proposes a hybrid model to describe the transient dielectric charging and discharging process in the defect-rich amorphous SiO2 RF MEMS capacitive switches and verifies experimentally. The hybrid model contains two parts according to two different charging mechanisms of the amorphous SiO2, which are the polarisation and charge injection. The models for polarisation and for charge injection are established, respectively. Analysis and experimental results show that polarisation is always effective, while the charge injection has a threshold electric field to the amorphous SiO2 film. Under different control voltage conditions, the hybrid model can accurately describe the experimental data.展开更多
The aragonite, an index mineral of glaucophane schist facies, has not been confirmed in the Dabie Mountains high pressure and ultrahigh pressure metamorphic belts. The Mulanshan glaucophane schist in Huangpi County,...The aragonite, an index mineral of glaucophane schist facies, has not been confirmed in the Dabie Mountains high pressure and ultrahigh pressure metamorphic belts. The Mulanshan glaucophane schist in Huangpi County, Hubei Province is located in the southwestern Dabie Mountains, Central China. The micron sized intergranular aragonite is confirmed with optical microscope (OM) and electron probe microanalysis (EPMA) in the glaucophane schist. The submicrometer sized ellipse aragonite inclusion is observed by using bright field image (BFI), X ray energy damage spectrograph (EDS) and selected area electron diffraction (SAED) with transmission electron microscope in the quartz lens of glaucophane albite epidote chlorite schist from Mulanshan. The presence of aragonite indicates not only the average geothermal gradient of the Mulanshan glaucophane schist less than 10 ℃/km, which is very close to that of eclogite in the Dabie Mountains metamorphic belts, but also the relatively higher concentration of CO2 during the metamorphic process. In addition, the glaucophane schist free of such index minerals as lawsonite, prehnite and pumpellyite, has been attributed to the effect of CO2 on the stability of calcium aluminum silicate minerals during the low grade metamorphism. EDS and SAED analysis results show that the host of aragonite inclusion is amorphous SiO2. The occurrence of amorphous SiO2 indicates a quick cooling process during the exhumation of the Mulanshan glaucophane schist. These results suggest that the rapid exhumation mechanism of the glaucophane schist, the same as that of eclogite in the Dabie Mountains metamorphic belts, occurred in the geodynamic context of subduction obduction.展开更多
Damage points induced by 355 nm laser irradiation increase more quickly on the surface of fused silica in vacuum of about 10^-3 Pa than in atmospheric air at the same fluence. The larger concentration of point defects...Damage points induced by 355 nm laser irradiation increase more quickly on the surface of fused silica in vacuum of about 10^-3 Pa than in atmospheric air at the same fluence. The larger concentration of point defects in vacuum is confirmed by photoluminescence intensity. X-ray photoelectron spectroscopy and infrared absorption indicate the formation of sub-stoichiometric silica on the surface. The degradation mechanism of fused silica in vacuum is discussed.展开更多
ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray...ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray diffraction, infrared spectrum, scanning electron microscope and differential scanning calorimetric. And the mechanical properties of the nano-ceramics were studied. The results show that the bulks are still in amorphous state at 900 ℃ and the t-ZrO2 forms at about 950 ℃ with a faint spinel-like phase which changes into mullite on further heating. ZrO2 and mullite become major phases at 1 100 ℃ and an amount of m-ZrO2 occur at the same time. The sample heated at 950 ℃ for 2 h and then at 1 100 ℃ for 1 h shows very dense and homogenous microstructure with ball-like grains in size of 20-50 nm. With the increase of crystallization temperature up to 1 350 ℃, the grains grow quickly and some grow into lath-shaped grains with major diameter of 5 μm. After two-step treatment the highest micro-hardness, flexural strength and fracture toughness of the samples are 13.72 GPa, 520 MPa and 5.13 MPa·m1/2, respectively.展开更多
Phenylalanine (Phe) is a significant amino acid that cannot be synthesized by human themselves but must be taken from environment. It was initially found that the nanosized amorphous Ni-B/SiO2 alloy prepared by the ...Phenylalanine (Phe) is a significant amino acid that cannot be synthesized by human themselves but must be taken from environment. It was initially found that the nanosized amorphous Ni-B/SiO2 alloy prepared by the chemical reduction method was an effective catalyst for the preparation of Phe from phenylpyruvic acid (PPA) by amination and hydrogenation. It has been found that the amorphous Ni-B/SiO2 alloy catalyst exhibits superior activity and selectivity to the traditional catalysts Raney Ni and Urushibara nickel. The effects of reaction time, amounts of catalysts and ammonia solution, reaction temperature, and H2 pressure on the reaction have been investigated systematically. The results indicated that the yield of Phe was 97.9%, and the selectivity for Phe reached 98.9% when the reaction was carried out for 3 h at 333 K and 2.0 MPa of H2 with m(Cat.) : m(PPA) = 0.6 : 1.0 and n(NH3) : n(PPA) = 3 : 1. The catalysts were characterized by XRD, AAS, XPS, BET, and TEM, and the relationship between the catalyst structure and the catalytic activity was discussed in detail. It was found that the reason why Ni-B/SiO2 amorphous alloy catalyst was much more active for the preparation of Phe could be accounted for by the presence of electron-rich Ni due to electron donation from alloying B; the smaller size of Ni-B particles, the larger specific surface area of Ni-B/SiO2.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 60676043)
文摘Charging is one of the most important reliability issues in radio frequency microelectro- mechanical systems (RF MEMS) capacitive switches since it makes the actuation voltage unstable. This paper proposes a hybrid model to describe the transient dielectric charging and discharging process in the defect-rich amorphous SiO2 RF MEMS capacitive switches and verifies experimentally. The hybrid model contains two parts according to two different charging mechanisms of the amorphous SiO2, which are the polarisation and charge injection. The models for polarisation and for charge injection are established, respectively. Analysis and experimental results show that polarisation is always effective, while the charge injection has a threshold electric field to the amorphous SiO2 film. Under different control voltage conditions, the hybrid model can accurately describe the experimental data.
基金theNationalNaturalScienceFoundationofChina (No .4980 2 0 0 4)
文摘The aragonite, an index mineral of glaucophane schist facies, has not been confirmed in the Dabie Mountains high pressure and ultrahigh pressure metamorphic belts. The Mulanshan glaucophane schist in Huangpi County, Hubei Province is located in the southwestern Dabie Mountains, Central China. The micron sized intergranular aragonite is confirmed with optical microscope (OM) and electron probe microanalysis (EPMA) in the glaucophane schist. The submicrometer sized ellipse aragonite inclusion is observed by using bright field image (BFI), X ray energy damage spectrograph (EDS) and selected area electron diffraction (SAED) with transmission electron microscope in the quartz lens of glaucophane albite epidote chlorite schist from Mulanshan. The presence of aragonite indicates not only the average geothermal gradient of the Mulanshan glaucophane schist less than 10 ℃/km, which is very close to that of eclogite in the Dabie Mountains metamorphic belts, but also the relatively higher concentration of CO2 during the metamorphic process. In addition, the glaucophane schist free of such index minerals as lawsonite, prehnite and pumpellyite, has been attributed to the effect of CO2 on the stability of calcium aluminum silicate minerals during the low grade metamorphism. EDS and SAED analysis results show that the host of aragonite inclusion is amorphous SiO2. The occurrence of amorphous SiO2 indicates a quick cooling process during the exhumation of the Mulanshan glaucophane schist. These results suggest that the rapid exhumation mechanism of the glaucophane schist, the same as that of eclogite in the Dabie Mountains metamorphic belts, occurred in the geodynamic context of subduction obduction.
文摘Damage points induced by 355 nm laser irradiation increase more quickly on the surface of fused silica in vacuum of about 10^-3 Pa than in atmospheric air at the same fluence. The larger concentration of point defects in vacuum is confirmed by photoluminescence intensity. X-ray photoelectron spectroscopy and infrared absorption indicate the formation of sub-stoichiometric silica on the surface. The degradation mechanism of fused silica in vacuum is discussed.
基金Project(2003AA332040) supported by the National High Technology Research and Development Program of China
文摘ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray diffraction, infrared spectrum, scanning electron microscope and differential scanning calorimetric. And the mechanical properties of the nano-ceramics were studied. The results show that the bulks are still in amorphous state at 900 ℃ and the t-ZrO2 forms at about 950 ℃ with a faint spinel-like phase which changes into mullite on further heating. ZrO2 and mullite become major phases at 1 100 ℃ and an amount of m-ZrO2 occur at the same time. The sample heated at 950 ℃ for 2 h and then at 1 100 ℃ for 1 h shows very dense and homogenous microstructure with ball-like grains in size of 20-50 nm. With the increase of crystallization temperature up to 1 350 ℃, the grains grow quickly and some grow into lath-shaped grains with major diameter of 5 μm. After two-step treatment the highest micro-hardness, flexural strength and fracture toughness of the samples are 13.72 GPa, 520 MPa and 5.13 MPa·m1/2, respectively.
基金Fundamental research project of South-Central University for Nationalities (No. YZZ05010)
文摘Phenylalanine (Phe) is a significant amino acid that cannot be synthesized by human themselves but must be taken from environment. It was initially found that the nanosized amorphous Ni-B/SiO2 alloy prepared by the chemical reduction method was an effective catalyst for the preparation of Phe from phenylpyruvic acid (PPA) by amination and hydrogenation. It has been found that the amorphous Ni-B/SiO2 alloy catalyst exhibits superior activity and selectivity to the traditional catalysts Raney Ni and Urushibara nickel. The effects of reaction time, amounts of catalysts and ammonia solution, reaction temperature, and H2 pressure on the reaction have been investigated systematically. The results indicated that the yield of Phe was 97.9%, and the selectivity for Phe reached 98.9% when the reaction was carried out for 3 h at 333 K and 2.0 MPa of H2 with m(Cat.) : m(PPA) = 0.6 : 1.0 and n(NH3) : n(PPA) = 3 : 1. The catalysts were characterized by XRD, AAS, XPS, BET, and TEM, and the relationship between the catalyst structure and the catalytic activity was discussed in detail. It was found that the reason why Ni-B/SiO2 amorphous alloy catalyst was much more active for the preparation of Phe could be accounted for by the presence of electron-rich Ni due to electron donation from alloying B; the smaller size of Ni-B particles, the larger specific surface area of Ni-B/SiO2.