期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Designing and Cloning of the Gene Sequence Encoding Silk Fibroin Amorphous Domain 被引量:3
1
作者 黄海燕 田智芳 +2 位作者 裔洪根 杨云星 王建南 《Journal of Donghua University(English Edition)》 EI CAS 2012年第6期489-492,共4页
To provide materials used in investigating the relationship between amino acid compositions of silk-like protein, structure, and functions, especially the biological functions, the motif genes encoding the silk fibroi... To provide materials used in investigating the relationship between amino acid compositions of silk-like protein, structure, and functions, especially the biological functions, the motif genes encoding the silk fibroin amorphous domain, SGFGPVANGGSGEASSESDFGSSGFGPVANASSGEASSESDFAG(F) were designed and extended using a "head-to-tail" construction strategy. The designed genes were cloned into PSLFA1180FA and multimerized to form structures containing a two-timer, a four-timer, an eight-timer, and a twelve-timer. All the resulting plasmids were digested using the restriction enzyme BamHI and the double-enzymes BglII/HindIII. Restriction enzyme analysis and DNA sequencing revealed the motif was successfully cloned into PSLFA1180FA and multimerized to form a twelve-timer without gene deletion or mutation. 展开更多
关键词 Escherichia coli silk fibroin amorphous domain gene cloning DNA electrophoresis
下载PDF
Study of Hydrophilic Properties of Polysaccharides
2
作者 Michael Ioelovich 《Organic Polymer Material Research》 2021年第2期12-23,共12页
In this research,the structural characteristics,specific surface area,sorption of water vapor,and wetting enthalpy of various polysaccharides(cellulose,hemicelluloses,starch,pectin,chitin,and chitosan)have been studie... In this research,the structural characteristics,specific surface area,sorption of water vapor,and wetting enthalpy of various polysaccharides(cellulose,hemicelluloses,starch,pectin,chitin,and chitosan)have been studied.It was confirmed that crystallites are inaccessible for water,and therefore water molecules can interact only with polar groups in noncrystalline(amorphous)domains of biopolymers.The isotherms of water vapor sorption for various polysaccharides had sigmoid shapes,which can be explained by the absorption of water molecules in heterogeneous amorphous domains having clusters with different packing densities.The method of contributions of polar groups to sorption of water molecules was used,which allowed to derivate a simple calculating equation to describe the shape of sorption isotherms.The wetting of biopolymers with water was accompanied by a high exothermic thermal effect,in direct proportion to the amorphicity degree.The sorption values and wetting enthalpies of amorphous domains of biopolymers were calculated,which allowed to find the hydrophilicity index and compare the hydrophilicity of the various polysaccharides. 展开更多
关键词 POLYSACCHARIDES amorphous domains Structure Specific surface area Sorption of water vapor Enthalpy of wetting Hydrophilicity index Calculations
下载PDF
An atomistic model of silk protein network for studying the effect of pre-stretching on the mechanical performances of silks 被引量:1
3
作者 Wenhui Shen Zihan Tang +7 位作者 Xuwei Wu Liang Pan Yuan Cheng Bo Huo Jizhou Song Weiqiu Chen Baohua Ji Dechang Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第6期55-68,I0001,共15页
Silk protein builds one of the strongest natural fibers based on its complex nanocomposite structures.However,the mechanical performance of silk protein,related to its molecular structure and packing is still elusive.... Silk protein builds one of the strongest natural fibers based on its complex nanocomposite structures.However,the mechanical performance of silk protein,related to its molecular structure and packing is still elusive.In this study,we constructed an atomistic silk protein network model,which reproduces the extensive connection topology of silk protein with structure details of theβ-sheet crystallites and amorphous domains.With the silk protein network model,we investigated the structure evolution and stress distribution of silk protein under external loading.We found a pre-stretching treatment during the spinning process can improve the strength of silk protein.This treatment improves the properties of silk protein network,i.e.,increases the number of nodes and bridges,makes the nodes distributed homogeneously,and induces the bridges in the network well aligned to the loading direction,which is of great benefit to the mechanical performances of silk protein.Our study not only provides a realized atomistic model for silk protein network that well represents the structures and deformations of silk proteins under loading,but also gains deep insights into the mechanism how the pre-loading on silk proteins during spinning improves the mechanical properties of silk fibers. 展开更多
关键词 Silk protein amorphous domain β-sheet crystallite Mechanical performances Molecular dynamics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部