The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon...The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.展开更多
The application of a p~+/p configuration in the window layer of hydrogenated amorphous silicon thin film solar cells is simulated and analyzed utilizing an AMPS-ID program.The differences between p~+-p-i-n configura...The application of a p~+/p configuration in the window layer of hydrogenated amorphous silicon thin film solar cells is simulated and analyzed utilizing an AMPS-ID program.The differences between p~+-p-i-n configuration solar cells and p-i-n configuration solar cells are pointed out.The effects of dopant concentration, thickness of p~+-layer,contact barrier height and defect density on solar cells are analyzed.Our results indicate that solar cells with a p~+-p-i-n configuration have a better performance.The open circuit voltage and short circuit current were improved by increasing the dopant concentration of the p~+ layer and lowering the front contact barrier height.The defect density at the p/i interface which exceeds two orders of magnitude in the intrinsic layer will deteriorate the cell property.展开更多
During the last few decades, photothermal radiometry(PTR) has been greatly developed and widely applied in the field of nondestructive testing. However, the traditional PTR system employs an expensive lock-in amplif...During the last few decades, photothermal radiometry(PTR) has been greatly developed and widely applied in the field of nondestructive testing. However, the traditional PTR system employs an expensive lock-in amplifier to detect the weak photothermal signal, which leads to high cost and long test time. In this paper, a fast transmission PTR system based on sampling by using an internal computer sound card was developed to lower the system cost and shorter the test time. A piece of amorphous silicon(a:Si) thin film solar cells with artificial defects was prepared and tested by the system. The results show that the sharpened defects can be identified easily and quickly according to the significant peaks of the original infrared signal sampled by the internal computer sound card. Furthermore, more detailed defects can be investigated by processing the infrared signal. These validate the effectiveness of the proposed transmission PTR system as a low cost and efficient non-destructive test technique.展开更多
文摘The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.
基金supported by the Key Programs for Science and Technology Development of Jiangsu,China(Nos.BE20080030,BE2009028)the Qing Lan Project,China(No.2008-04)the Jiangsu"333"Project,China(No.201041)
文摘The application of a p~+/p configuration in the window layer of hydrogenated amorphous silicon thin film solar cells is simulated and analyzed utilizing an AMPS-ID program.The differences between p~+-p-i-n configuration solar cells and p-i-n configuration solar cells are pointed out.The effects of dopant concentration, thickness of p~+-layer,contact barrier height and defect density on solar cells are analyzed.Our results indicate that solar cells with a p~+-p-i-n configuration have a better performance.The open circuit voltage and short circuit current were improved by increasing the dopant concentration of the p~+ layer and lowering the front contact barrier height.The defect density at the p/i interface which exceeds two orders of magnitude in the intrinsic layer will deteriorate the cell property.
基金supported by the National Natural Science Foundation of China under Grant No.61379013the Excellent Doctoral Academic Support Program under Grant No.YBXSZC2013021
文摘During the last few decades, photothermal radiometry(PTR) has been greatly developed and widely applied in the field of nondestructive testing. However, the traditional PTR system employs an expensive lock-in amplifier to detect the weak photothermal signal, which leads to high cost and long test time. In this paper, a fast transmission PTR system based on sampling by using an internal computer sound card was developed to lower the system cost and shorter the test time. A piece of amorphous silicon(a:Si) thin film solar cells with artificial defects was prepared and tested by the system. The results show that the sharpened defects can be identified easily and quickly according to the significant peaks of the original infrared signal sampled by the internal computer sound card. Furthermore, more detailed defects can be investigated by processing the infrared signal. These validate the effectiveness of the proposed transmission PTR system as a low cost and efficient non-destructive test technique.