期刊文献+
共找到41,790篇文章
< 1 2 250 >
每页显示 20 50 100
基于In Silicon模拟消化的北极虾DPP-Ⅳ抑制肽活性分析
1
作者 刘浩思 徐春明 +3 位作者 田源 韩爱萍 刘孝飞 李振华 《中国食品添加剂》 CAS 2024年第1期127-135,共9页
北极虾具有很高的营养价值,在食品领域已引起越来越多的关注。对北极虾蛋白进行In Silicon模拟消化获得寡肽,通过PeptideRanker活性评分及理化性质分析,从中筛选出具有潜在生物活性的寡肽。使用ToxinPred分析和BIOPEP-UWM生物活性预测,... 北极虾具有很高的营养价值,在食品领域已引起越来越多的关注。对北极虾蛋白进行In Silicon模拟消化获得寡肽,通过PeptideRanker活性评分及理化性质分析,从中筛选出具有潜在生物活性的寡肽。使用ToxinPred分析和BIOPEP-UWM生物活性预测,发现部分寡肽具有二肽基肽酶-Ⅳ(dipeptidyl peptidase-Ⅳ,DPP-Ⅳ)抑制活性,最终确定WFP(一种三肽,Trp-Phe-Pro)具有最优的DPP-Ⅳ抑制活性肽。分子对接表明,WFP和DPP-Ⅳ能够形成稳定的复合物,其结合能为-6.93 kcal/mol,进一步研究表明,WFP通过与DPP-Ⅳ S1、S2、S3三个活性口袋中的9个氨基酸残基发生相互作用而抑制其活性。本研究为阐释北极虾营养价值及生物活性肽的开发提供了理论依据。 展开更多
关键词 In silicon 分子对接 DPP-Ⅳ 细胞色素C氧化酶亚基Ⅰ 寡肽
下载PDF
Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries:Overcoming Challenges and Real-World Applications 被引量:1
2
作者 Mustafa Khan Suxia Yan +6 位作者 Mujahid Ali Faisal Mahmood Yang Zheng Guochun Li Junfeng Liu Xiaohui Song Yong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期341-384,共44页
Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material... Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material pulverization and capacity degradation.Recent research on nanostructured Si aims to mitigate volume expansion and enhance electrochemical performance,yet still grapples with issues like pulverization,unstable solid electrolyte interface(SEI)growth,and interparticle resistance.This review delves into innovative strategies for optimizing Si anodes’electrochemical performance via structural engineering,focusing on the synthesis of Si/C composites,engineering multidimensional nanostructures,and applying non-carbonaceous coatings.Forming a stable SEI is vital to prevent electrolyte decomposition and enhance Li^(+)transport,thereby stabilizing the Si anode interface and boosting cycling Coulombic efficiency.We also examine groundbreaking advancements such as self-healing polymers and advanced prelithiation methods to improve initial Coulombic efficiency and combat capacity loss.Our review uniquely provides a detailed examination of these strategies in real-world applications,moving beyond theoretical discussions.It offers a critical analysis of these approaches in terms of performance enhancement,scalability,and commercial feasibility.In conclusion,this review presents a comprehensive view and a forward-looking perspective on designing robust,high-performance Si-based anodes the next generation of LIBs. 展开更多
关键词 silicon anode Energy storage NANOSTRUCTURE Prelithiation BINDER
下载PDF
Regulation of 2-acetyl-1-pyrroline and grain quality in early-season indica fragrant rice by nitrogen and silicon fertilization under different plantation methods 被引量:1
3
作者 Yongjian Chen Lan Dai +7 位作者 Siren Cheng Yong Ren Huizi Deng Xinyi Wang Yuzhan Li Xiangru Tang Zaiman Wang Zhaowen Mo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期511-535,共25页
Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and frag... Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments. 展开更多
关键词 fragrant rice 2-AP content head rice yield mechanical planting NITROGEN silicon
下载PDF
Effect of Silicon Amendment on Growth and Nitrogen Status of Common Landscaping Plants
4
作者 Bárbara Nogueira Souza Costa Milagros Ninoska Munoz Salas +1 位作者 Kylie Gil Amir Ali Khoddamzadeh 《American Journal of Plant Sciences》 CAS 2024年第8期603-616,共14页
Agriculture and natural vegetations in South Florida face with significant environmental threats such as heat and saltwater intrusion. This study aimed to investigate how silicon application could improve growth param... Agriculture and natural vegetations in South Florida face with significant environmental threats such as heat and saltwater intrusion. This study aimed to investigate how silicon application could improve growth parameters and plant health of landscaping plants under extreme temperatures, influenced by global climate changes. Cocoplum (Chrysobalanus icaco), cabbage palm (Sabal palmetto), satinleaf (Chrysophyllum oliviforme), and wild coffee (Psychotria nervosa) plants received an initial slow-release fertilizer of 15 g/pot with an 8N-3P-9K composition. Silicon was applied as a 1% silicic acid solution, with concentrations ranging from 0 g/pot to 6 g/pot of 7.5 L. Evaluations were carried out every 30 days, continuing until 180 days after the treatment was completed. Phenotypic traits, including leaf count and plant height, were assessed alongside measurements from handheld optical non-destructive sensors. These measurements included the normalized difference vegetation index (NDVI), SPAD-502, and atLEAF chlorophyll meters. Application of 4 g/pot and 6 g/pot of silicon significantly improved NDVI values (0.78). Conversely, cocoplum plants exhibited greater plant height (79.6) at 0 g/pot silicon compared to other treatments. In wild coffee samplings, the control group showed the highest plant height and SPAD readings (93.49) compared to other treatments. Interestingly, the control treatment also demonstrated a superior atLEAF value as compared to other treatments, while the tallest samplings were observed with 6 g/pot of silicon (62.82) in cabbage palm plants. The findings indicate that silicon application positively influenced plant growth, particularly evident in cabbage palms. However, cocoplum and wild coffee exhibited a negative correlation between plant height and silicon concentrations. 展开更多
关键词 silicon Application Chlorophyll Content Cocoplum Cabbage Palm Satinleaf Wild Coffee
下载PDF
From 0D to 3D:Hierarchical structured high-performance free-standing silicon anodes based on binder-induced topological network architecture
5
作者 Yihong Tong Ruicheng Cao +4 位作者 Guanghui Xu Yifeng Xia Hongyuan Xu Hong Jin Hui Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期16-23,I0002,共9页
Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal ... Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges. 展开更多
关键词 Topological network SELF-STABILIZATION FLEXIBILITY FREE-STANDING silicon anode
下载PDF
The Various Complications Associated with Use of Silicone Oil in Rhegmatogenous Retinal Detachment (RRD) Surgery via Three-Port Vitrectomy (3PV): A Retrospective Study at the Ophthalmology Center of Abass Ndao Hospital
6
作者 Soda Mbaye El Hadji Malick Sy +1 位作者 Aïssatou Aw Papa Amadou Ndiaye 《Open Journal of Ophthalmology》 2024年第3期250-256,共7页
Introduction: RRD (Rhegmatogenous Retinal Detachment) is a separation between the neuroepithelium and the pigment epithelium due to the passage of fluid through a retinal dehiscence. It constitutes a major ophthalmolo... Introduction: RRD (Rhegmatogenous Retinal Detachment) is a separation between the neuroepithelium and the pigment epithelium due to the passage of fluid through a retinal dehiscence. It constitutes a major ophthalmologic emergency. Its management is primarily surgical, either through external or internal approaches, with tamponade using gas or silicone oil. The purpose of this study was to report the various complications associated with the use of silicone oil in vitreoretinal surgery. Patients et methods: We conducted a retrospective, descriptive, and analytical study from October 1, 2020, to October 31, 2023, which included all patients who underwent surgery for RRD using three-port vitrectomy (3PV) with tamponade using 1000 centistoke silicone oil (Group 1) and 5000 centistoke silicone oil (Group 2). All patients underwent a complete ophthalmologic examination and were operated on by the same surgeon. Data analysis was performed using Excel software. Results: Overall, 31 patient files representing 33 eyes were collected, with a mean age of 48.83 years and a sex ratio of 4.16. Group 1 consisted of 16 eyes (48.48%), and Group 2 consisted of 17 eyes (51.51%). The different complications observed were cataracts in all phakic subjects, accounting for 57.57%;ocular hypertonia in 69.69% (27.27% in Group 1;42.42% in Group 2);anterior chamber silicone oil migration in 24.24% (9.09% in Group 1;15.15% in Group 2);recurrence of retinal detachment in 21.21% (6.06% in Group 1;15.15% in Group 2);and silicone oil emulsification in 24.24% (15.15% in Group 1;9.09% in Group 2). Additionally, there was one case of corneal degeneration in Group 1. Conclusion: Silicone oil is an effective tamponade agent used in the treatment of retinal detachments. Close patient follow-up is necessary due to the complications associated with its use, which can occur either early or late after surgery. 展开更多
关键词 siliconE CATARACTS OHT Emulsifications
下载PDF
Sol-gel synthesis of nanometer silicon/silicon suboxide/carbon anode material
7
作者 QIN Tong WANG Zheng LI Zhengzheng 《Baosteel Technical Research》 CAS 2024年第2期12-18,共7页
A stacked Si/SiO_(x)/C composite anode material with carbon-coated structure was prepared by sol-gel method combined with carbothermal reduction using organic silicon.The results of X-ray diffractometry, scanning elec... A stacked Si/SiO_(x)/C composite anode material with carbon-coated structure was prepared by sol-gel method combined with carbothermal reduction using organic silicon.The results of X-ray diffractometry, scanning electron microscopy, and elemental analysis show that the Si/SiO_(x)/C material is a secondary particle with a porous micronanostructure, and the presence of nanometer silicon does not affect the carbothermal reduction and carbon coating.Electrochemical test results indicate that the specific capacity and first coulombic efficiency of SiO_(x)/C composite with nanometer silicon can be increased to 1 946.05 mAh/g and 76.49%,respectively.The reversible specific capacity of Si/SiO_(x)/C material blended with graphite is 749.69 mAh/g after 100 cycles at a current density of 0.1 C,and the capacity retention rate is up to 89.03%.Therefore, the composite has excellent electrochemical cycle stability. 展开更多
关键词 sol-gel method nanometer silicon silicon suboxide anode material
下载PDF
Photosynthetic Gas Exchange and Nitrogen Assimilation in Green Bean Plants Supplied with Two Sources of Silicon
8
作者 Julio C.Anchondo-Páez Esteban Sánchez +2 位作者 Carlos A.Ramírez-Estrada Alondra Salcido-Martínez Erick H.Ochoa-Chaparro 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第5期963-980,共18页
Beans contain a wide range of vitamins,proteins,calcium,and zinc which make them an important food source for many countries.To meet the demand for bean production worldwide,large amounts of fertilizers and pesticides... Beans contain a wide range of vitamins,proteins,calcium,and zinc which make them an important food source for many countries.To meet the demand for bean production worldwide,large amounts of fertilizers and pesticides are used.However,the cost of production and environmental impact increases.To produce food sustainably,the use of beneficial nutrients such as silicon as a biostimulant has been proposed.However,information about the effect of different sources of silicon on the metabolism of bean plants is scarce.Bean plants cv.Strike were grown in pots for 60 days and the effect of foliar application of silicon nanoparticles and the silicon-based biostimulant Codasilat 4 concentrations(0,1,2,and 4 mM)on total biomass,yield,photosynthetic pigment concentration,photosynthetic activity,stomatal conductance,transpiration rate,chlorophyll fluorescence,and nitrogen assimilation were evaluated.The results obtained showed that the supply of silicon at a dose of 1 mM functioned as a biostimulant,favoring gas exchange and nitrogen assimilation within the plant,which stimulated growth and yield.The results of this research work allowed a better comprehension of the effects of silicon application through silicon nanoparticles and the biostimulant Codasilon the physiology of green bean plants. 展开更多
关键词 NANOPARTICLES silicon Phaseolus vulgaris L.
下载PDF
Facilitating prelithiation of silicon carbon anode by localized high-concentration electrolyte for high-rate and long-cycle lithium storage
9
作者 Yuanxing Zhang Borong Wu +6 位作者 Jiaying Bi Xinyu Zhang Daobin Mu Xin-Yu Zhang Ling Zhang Yao Xiao Feng Wu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期216-233,共18页
The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Her... The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Herein,a feasible and cost-effective prelithiation method under a localized highconcentration electrolyte system(LHCE)for the silicon-silica/graphite(Si-SiO_(2)/C@G)anode is designed for stabilizing the SEI layer and enhancing the ICE.The thin SiO_(2)/C layers with-NH_(2) groups covered on nano-Si surfaces are demonstrated to be beneficial to the prelithiation process by density functional theory calculations and electrochemical performance.The SEI formed under LHCE is proven to be rich in ionic conductivity,inorganic substances,and flexible organic products.Thus,faster Li+transportation across the SEI further enhances the prelithiation effect and the rate performance of Si-SiO_(2)/C@G anodes.LHCE also leads to uniform decomposition and high stability of the SEI with abundant organic components.As a result,the prepared anode shows a high reversible specific capacity of 937.5 mAh g^(-1)after 400 cycles at a current density of 1 C.NCM 811‖Li-SSGLHCE full cell achieves a high-capacity retention of 126.15 mAh g^(-1)at 1 C over 750 cycles with 84.82%ICE,indicating the great value of this strategy for Si-based anodes in large-scale applications. 展开更多
关键词 localized high-concentration electrolytes prelithiation SEI layer silicon anode
下载PDF
Silicone oil as a corneal lubricant to reduce corneal edema and improve visualization during
10
作者 Dan-Yang Che Zhu-Lin Chan +1 位作者 Ji-Bo Zhou Dong-Qing Zhu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第1期92-96,共5页
AIM:To evaluate the efficacy and safety of silicone oil(SO)as a corneal lubricant to improve visualization during vitrectomy.METHODS:Patients who underwent vitreoretinal surgery were divided into two groups.Group 1 wa... AIM:To evaluate the efficacy and safety of silicone oil(SO)as a corneal lubricant to improve visualization during vitrectomy.METHODS:Patients who underwent vitreoretinal surgery were divided into two groups.Group 1 was operated on with initial SO(Oxane 5700)as a corneal lubricant.Group 2 was operated on with initial lactated ringer’s solution(LRS)and then replaced with SO as required.Fundus clarity was scored during the surgery.Fluorescein staining was performed to determine the damage to corneal epithelium.RESULTS:Totally 114 eyes of 114 patients were included.Single SO use maintained a clear cornea and provided excellent visualization of surgical image.In group 1,the fundus clarity was grade 3 in 41/45 eyes and grade 2 in 4/45 eyes.In group 2,corneal edema frequently occurred after initial LRS use.The fundus clarity was grade 3 in 19/69 eyes,2 in 37/69 eyes and 1 in 13/69 eyes(P<0.05).SO was applied in 29 eyes of initial LRS use with subsequent corneal edema,which eliminated the corneal edema in 26 eyes.Corneal fluorescein staining score in group 1 was 0 in 28 eyes,1 in 11 eyes and 2 in 6 eyes,and 40,20 and 9,respectively,in group 2(all P>0.05).CONCLUSION:The use of SO as a corneal lubricant is effective and safe for preserving and improving corneal clarity and providing clear surgical field during vitrectomy. 展开更多
关键词 silicone oil corneal lubricant corneal edema VITRECTOMY
下载PDF
Optimized silicon fertilization regime weakens cadmium translocation and increases its biotransformation in rice tissues
11
作者 Bogui Pan Yixia Cai +2 位作者 Kunzheng Cai Jihui Tian Wei Wang 《The Crop Journal》 SCIE CSCD 2024年第4期1041-1053,共13页
In acidic paddy fields of South China,rice(Oryza sativa L.)faces the dual challenges of cadmium(Cd)toxicity and silicon(Si)deficiency.Although previous studies have highlighted the functions of Si application timing a... In acidic paddy fields of South China,rice(Oryza sativa L.)faces the dual challenges of cadmium(Cd)toxicity and silicon(Si)deficiency.Although previous studies have highlighted the functions of Si application timing and strategies in mitigating Cd-stressed rice,the precise mechanisms underlying the health restoration of Cd-toxic rice and the assurance of grain safety remain elusive.This study explored Cd translocation and detoxification in the shoots of rice regulated by various Si fertilization regimes:Si(T)(all Si added before transplanting),Si(J)(all Si added at jointing),and Si(TJ)(half Si added both before transplanting and at jointing).The findings revealed that the regime of Si(TJ)was more beneficial to rice health and grain safety than Si(T)and Si(J).The osmotic regulators such as proline,soluble sugars,and soluble proteins were significantly boosted by Si(TJ)compared to other Si treatments,and which enhanced membrane integrity,balanced intracellular pH,and increased Cd tolerance of rice.Furthermore,Si(TJ)was more effective than Si(T)and Si(J)on the Cd sequestration in the cell wall,Cd bio-passivation,and the down-regulated expression of the Cd transport genes.The concentrations of Cd in the xylem and phloem treated with Si(TJ)were reduced significantly.Additionally,Si(TJ)facilitated much more Cd bound with the outer layer proteins of grains,and promoted Cd chelation and complexation by phytic acid,phenolics,and flavonoids.Overall,Si(TJ)outperformed Si(T)and Si(J)in harmonizing the phycological processes,inhibiting Cd translocation,and enhancing Cd detoxification in rice plant.Thereby the split Si application strategy offers potential for reducing Cd toxicity in rice grain. 展开更多
关键词 CADMIUM silicon Growth stages Translocation and accumulation RICE Safe production
下载PDF
Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures
12
作者 王秋辰 黄昱力 +3 位作者 许晶 禹习谦 李泓 陈立泉 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期117-126,共10页
Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid ... Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid electrolyte interphase(SEI)formation and particle pulverization.However,major challenges arise for Si anodes in SSBs at elevated temperatures.In this work,the failure mechanisms of Si-Li_(6)PS_(5)Cl(LPSC)composite anodes above 80℃are thoroughly investigated from the perspectives of interface stability and(electro)chemo-mechanical effect.The chemistry and growth kinetics of Lix Si|LPSC interphase are demonstrated by combining electrochemical,chemical and computational characterizations.Si and/or Si–P compound formed at Lix Si|LPSC interface prove to be detrimental to interface stability at high temperatures.On the other hand,excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes.This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs. 展开更多
关键词 sulfide electrolytes silicon anodes interface stability degradation kinetics all-solid-state batteries
下载PDF
Effect of multiple coulomb scattering on the beam tests of silicon pixel detectors
13
作者 Lan-Kun Li Ming-Yi Dong +2 位作者 Ze Gao Liang-Cheng-Long Jin Shu-Jun Zhao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期200-207,共8页
In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and perfo... In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and performance evaluation.When the beam energy is low,the effect of multiple Coulomb scattering on the measured resolution of the Device Under Test(DUT)must be considered to accurately evaluate the performance of the pixel chips and detectors.This study aimed to investigate the effect of multiple Coulomb scattering on the measured resolution,particularly at low beam energies.Simulations were conducted using Allpix^(2) to study the effects of multiple Coulomb scattering under different beam energies,material budgets,and telescope layouts.The simulations also provided the minimum energy at which the effect of multiple Coulomb scattering could be ignored.Compared with the results of a five-layer detector system tested with an electron beam at DESY,the simulation results were consistent with the beam test results,confirming the reliability of the simulations. 展开更多
关键词 silicon Pixel Detectors Beam Telescope Multiple Coulomb Scattering Spatial Resolution
下载PDF
Non-contact wide-field viewing system-assisted scleral buckling surgery for retinal detachment in silicone oilfilled eyes
14
作者 Su-Lan Wu Yi-Qi Chen +7 位作者 Li-Jun Shen Jian-Bo Mao Li Lin Ji-Wei Tao Huan Chen Shi-An Zhang Jia-Feng Yu Chen-Xi Wang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第4期761-766,共6页
AIM:To evaluate scleral buckling(SB)surgery using a noncontact wide-field viewing system and 23-gauge intraocular illumination for the treatment of rhegmatogenous retinal detachment in silicone oil(SO)-filled eyes.MET... AIM:To evaluate scleral buckling(SB)surgery using a noncontact wide-field viewing system and 23-gauge intraocular illumination for the treatment of rhegmatogenous retinal detachment in silicone oil(SO)-filled eyes.METHODS:Totally 9 patients(9 eyes)with retinal detachment in SO-filled eyes were retrospectively analyzed.All patients underwent non-contact wide-field viewing system-assisted buckling surgery with 23-gauge intraocular illumination.SO was removed at an appropriate time based on recovery.The patients were followed up for at least 3mo after SO removal.Retinal reattachment,complications,visual acuity and intraocular pressure(IOP)before and after surgery were observed.RESULTS:Patients were followed up for a mean of 8.22mo(3-22mo)after SO removal.All patients had retinal reattachment.At the final follow-up,visual acuity showed improvement for 8 patients,and no change for 1 patient.The IOP was high in 3 patients before surgery,but it stabilized after treatment;it was not affected in the other patients.None of the patients had infections,hemorrhage,anterior ischemia,or any other complication.CONCLUSION:This new non-contact wide-field viewing system-assisted SB surgery with 23-gauge intraocular illumination is effective and safe for retinal detachment in SO-filled eyes. 展开更多
关键词 non-contact wide-field viewing system scleral buckling silicone oil-filled retinal detachment
下载PDF
Silicone oil migrating into the conjunctival space and orbit after surgery for an eye-penetrating injury:A case report
15
作者 Ben-Liang Shu Hong-Yun Wu +4 位作者 Yu-Xiang Hu Jie Rao Bin Wei Qin-Yi Huang Xiao-Rong Wu 《World Journal of Clinical Cases》 SCIE 2024年第19期3950-3955,共6页
BACKGROUND We report a case of eye-penetrating injury in which a massive silicone oil migration into the patient’s subconjunctival space and orbit occurred after vitrectomy.CASE SUMMARY A 30-year-old male patient sou... BACKGROUND We report a case of eye-penetrating injury in which a massive silicone oil migration into the patient’s subconjunctival space and orbit occurred after vitrectomy.CASE SUMMARY A 30-year-old male patient sought medical attention at Ganzhou People’s Hospital after experiencing pain and vision loss in his left eye due to a nail wound on December 9,2023.Diagnosis of penetrating injury caused by magnetic foreign body retention in the left eye and hospitalization for treatment.On December 9,2023,pars plana vitrectomy was performed on the left eye for intraocular foreign body removal,abnormal crystal extraction,retinal photocoagulation.Owing to the discovery of retinal detachment at the posterior pole during surgery,silicone oil was injected to fill the vitreous body,following which upper conjunctival bubble-like swelling was observed.Postoperative orbital computed tomography(CT)review indicated migration of silicone oil to the subconjunctival space and orbit through a self-permeable outlet.On December 18,2023,the patient sought treatment at the First Affiliated Hospital of Nanchang University,China.The patient presented with a pronounced foreign body sensation following left eye surgery.On December 20,2023,the foreign body was removed from the left eye frame and an intraocular examination was conducted.The posterior scleral tear had closed,leading to termination of the surgical procedure following supplementary laser treatment around the tear.The patient reported a significant reduction in ocular surface symptoms just one day after surgery.Furthermore,a notable decrease in the migration of silicone oil was observed in orbital CT scans.CONCLUSION The timing of silicone oil injection for an eye-penetrating injury should be carefully evaluated to avoid the possibility of silicone oil migration. 展开更多
关键词 silicone oils MIGRATION VITRECTOMY Eye injuries PENETRATING Case report
下载PDF
Silicon Mitigates Aluminum Toxicity of Tartary Buckwheat by Regulating Antioxidant Systems
16
作者 Anyin Qi Xiaonan Yan +10 位作者 Yuqing Liu Qingchen Zeng Hang Yuan Huange Huang Chenggang Liang Dabing Xiang Liang Zou Lianxin Peng Gang Zhao Jingwei Huang Yan Wan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期1-13,共13页
Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on... Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growthof tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated inmany crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, androot volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At thesame time, catalase (CAT) and ascorbate peroxidase activities, polyphenols, flavonoids, and 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free-radical scavenging abilitywere significantly decreased. After the application of Si, root growth, Al accumulation, and oxidative damage wereimproved. Compared to Al-treated seedlings, the contents of ·O2− and MDA decreased by 29.39% and 25.22%,respectively. This was associated with Si-induced increases in peroxidase and CAT enzyme activity, flavonoidcompounds, and free-radical scavenging (DPPH and ABTS). The application of Si therefore has positive effectson Al toxicity in tartary buckwheat roots by reducing Al accumulation in the roots and maintaining oxidationhomeostasis. 展开更多
关键词 Tartary buckwheat aluminum stress silicon root growth oxidative stress
下载PDF
Pioneering the direct large-scale laser printing of flexible“graphenic silicon”self-standing thin films as ultrahigh-performance lithium-ion battery anodes
17
作者 Avinash Kothuru Adam Cohen +2 位作者 Gil Daffan Yonatan Juhl Fernando Patolsky 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期26-40,共15页
Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice f... Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice for these applications,with graphite being the standard anode material due to its stability.However,graphite falls short of meeting the growing demand for higher energy density,possessing a theoretical capacity that lags behind.To address this,researchers are actively seeking alternative materials to replace graphite in commercial batteries.One promising avenue involves lithiumalloying materials like silicon and phosphorus,which offer high theoretical capacities.Carbon-silicon composites have emerged as a viable option,showing improved capacity and performance over traditional graphite or pure silicon anodes.Yet,the existing methods for synthesizing these composites remain complex,energy-intensive,and costly,preventing widespread adoption.A groundbreaking approach is presented here:the use of a laser writing strategy to rapidly transform common organic carbon precursors and silicon blends into efficient“graphenic silicon”composite thin films.These films exhibit exceptional structural and energy storage properties.The resulting three-dimensional porous composite anodes showcase impressive attributes,including ultrahigh silicon content,remarkable cyclic stability(over 4500 cycles with∼40%retention),rapid charging rates(up to 10 A g^(-1)),substantial areal capacity(>5.1 mAh cm^(-2)),and excellent gravimetric capacity(>2400 mAh g^(-1) at 0.2 A g^(-1)).This strategy marks a significant step toward the scalable production of high-performance LIB materials.Leveraging widely available,cost-effective precursors,the laser-printed“graphenic silicon”composites demonstrate unparalleled performance,potentially streamlining anode production while maintaining exceptional capabilities.This innovation not only paves the way for advanced LIBs but also sets a precedent for transforming various materials into high-performing electrodes,promising reduced complexity and cost in battery production. 展开更多
关键词 4D printing energy storage fast-charging laser-induced graphene LITHIUM-ION silicon carbon composite anodes
下载PDF
Size Effect on the Radiation Stability Silicon Dioxide Sphere Particles
18
作者 Vitaly Neshchimenko Chundong Li +1 位作者 Mikhail Mikhailov Jinpeng Lv 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第4期1-12,共12页
The effect of protons(E = 100 keV,F = 5×10^(15) cm^(-2)) exposure on the diffuse reflectance spectra of the SiO_(2 )with different size particles in wavelength range from 250 to 2500 nm have been investigated.Par... The effect of protons(E = 100 keV,F = 5×10^(15) cm^(-2)) exposure on the diffuse reflectance spectra of the SiO_(2 )with different size particles in wavelength range from 250 to 2500 nm have been investigated.Particles were nanosphere,submicrosphere,microsphere and submacrosphere,as well as solid micro-and nanocrystals.The synthesis of the particles was carried out by the formation of silica shells and dissolution of the polystyrene core particles.The surface morphology,surface area and crystal structure of the particles have been investigated.When evaluating the changes of the solar absorptance,it was found that the radiation stability of the micro-and submacro-hollow particles is higher than that of the other nanostructured particles,except for solid microcrystals.The low radiation stability of the hollow microparticles is due to the large void inside the hollow particles where radiation defects are not formed. 展开更多
关键词 silicon dioxide hollow particles spectral reflectance IRRADIATION
下载PDF
Effects of Silicon Formulations on Cold Tolerance of Rice Seedlings
19
作者 Ren Hongyu Wang Wenbo +3 位作者 Li Xuecong Li Shuai Wen Yahuan Zhang Xingwen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第2期43-52,共10页
To investigate the effects of silicon formulations on the cold tolerance of rice seedlings,Song Japonica 16(not cold tolerant)and Dongnong 427(cold tolerant)rice varieties were used as test materials and four differen... To investigate the effects of silicon formulations on the cold tolerance of rice seedlings,Song Japonica 16(not cold tolerant)and Dongnong 427(cold tolerant)rice varieties were used as test materials and four different types of silicon formulations,Si-50-G,Si-60-G,Si-T-G,and Si-E-G,were applied as foliar sprays at the seedling stage,and a control group CK(equal amount of distilled water)was set up.One week after the first silicon spray,two types of rice were subjected to low-temperature stress treatments at day/night temperatures of 12℃/10℃for 2,4,6,and 8 days.The effects of different silicon formulations on the chlorophyll,proline(Pro)and soluble sugar contents as well as superoxide dismutase(SOD),peroxidase(POD)and catalase(CAT)activities of rice seedlings under low-temperature stress were compared to find out the effects of silicon formulations on the cold tolerance of rice seedlings.The results showed that silicon formulations could significantly increase the chlorophyll content of rice seedling leaves,with Si-50-G being the most effective,with a significant increment of 40.17%compared to the CK at 2 days of low temperature.Four silicon formulations significantly increased the proline content and soluble sugar content of rice leaves at low temperature for 4-8 days.For Song Japonica 16,the most significant increment in leaf POD activity was observed in Si-E-G treatment at 2,4 and 8 days of temperature stress,with 73.58%,20.95%and 217.24%increases compared to the CK,respectively.For 4 and 6 days of temperature stress,the most significant increase in CAT activity was observed in Si-E-G treatment,with 25.70%and 75.78%increases compared to the CK,respectively.For Dongnong 427,the Si-60-G treatment showed the highest increase in leaf SOD activity for 4 and 8 days of temperature stress,with significant increases of 58.15%and 82.76%compared to the CK,respectively,and the Si-E-G treatment showed the highest increase in leaf POD activity for 2 and 8 days of temperature stress,with significant increases of 97.75%and 245.10%compared to the CK,respectively.It showed that the spraying of silicon formulations could significantly enhance the cold tolerance of rice.This study provided a scientific basis for the rational use of silicon formulations to enhance cold tolerance in rice and had important theoretical and practical significance for ensuring sustainable high and stable rice yields in Heilongjiang Province,as well as for the development of silicon fertilizers. 展开更多
关键词 silicon formulation RICE seedling stage cold tolerance physiological indicator
下载PDF
Analysis on Demonstration Application of Silicon Fertilizer in Field Cultivation of Rice
20
作者 Fan YANG Lingyun DAI 《Agricultural Biotechnology》 2024年第1期24-27,共4页
[Objectives]This study was conducted to investigate the scientific application of silicon fertilizer in rice cultivation,one of the staple crops.[Methods]In 2022,Yandu District carried out a special experiment and fie... [Objectives]This study was conducted to investigate the scientific application of silicon fertilizer in rice cultivation,one of the staple crops.[Methods]In 2022,Yandu District carried out a special experiment and field demonstration study on the effects of foliar application of Zhengda water-soluble silicon fertilizer on rice production.[Results]The preliminary results showed that①Zhengda water-soluble silicon fertilizer could effectively improve the growth and development of rice and improve the population quality.The peak number of tillers,productive tiller percentage,number of effective panicles and number of effective grains per panicle increased by 6.7%,5.8%,5.5%,and 1.2%,respectively.②The yield and processing quality were improved.After applying silicon fertilizer,the yield per unit area increased by about 6.8%,and the unpolished rice yield,milled rice yield and head rice yield increased by 0.7%,1.94%and 2.15%respectively.[Conclusions]The demonstration application of silicon fertilizer in field cultivation of rice in Yandu District further proves previous research conclusions and has important practical significance. 展开更多
关键词 RICE silicon fertilizer Foliar application EFFECT
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部