期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Micro Amperometric Immunosensor Based on MEMS 被引量:2
1
作者 Chao Bian Yuanyuan Xu Hongguang Sun Shaofeng Chen Shanhong Xia 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期339-341,共3页
A micro amperometric immunosensor with the sensitive area of only 1mm^2 was fabricated on silicon using the technique of Micro-Electro-Mechanical Systems (MEMS).A double exposure of SU-8 photoresist process was develo... A micro amperometric immunosensor with the sensitive area of only 1mm^2 was fabricated on silicon using the technique of Micro-Electro-Mechanical Systems (MEMS).A double exposure of SU-8 photoresist process was developed to create both the sensitive pool and reaction pool.Antibody was immobilized via cross-linking with glutaraldehyde on the sensitive area of the electrode surface,which was electropolymerized with polypyrrole previously.The immunosensor was characterized by detection of human immunoglobulin G (HIgG).The immunosensor displayed a good linear response to HIgG concentrations between 5ng/ml and 255ng/ml and demonstrated a fast response time of 3 minutes. 展开更多
关键词 enzyme amperometric immunosensor MEMS POLYPYRROLE IGG
下载PDF
A MEMS Based Amperometric Immunosensor with Self-assembled Monolayers Immobilization Technique
2
作者 Yuanyuan Xu Chao Bian Shaofeng Chen Shanhong Xia 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期344-345,共2页
Based on MEMS technology,immunosensor with an'Au,Pt,Pt'three-microelectrode system enclosed in a SU-8 micro pool was fabricated.Employing SAMs technique,the Au electrode was modified by cysteamine(Cys)to assem... Based on MEMS technology,immunosensor with an'Au,Pt,Pt'three-microelectrode system enclosed in a SU-8 micro pool was fabricated.Employing SAMs technique,the Au electrode was modified by cysteamine(Cys)to assemble gold nanopanicles(nanogold)layer,subsequently,a layer of protein G(PG)was immobilized on nanogold layer to further capture antibody orientedly.Compared with the immunosensors using bulky gold electrode and direct PG binding to electrode immobilization technique for antibody,it has attractive advantages,such as miniaturization,good compatibility,broad linear range for human immunoglobulin(HIgG)and easy to be designed into array. 展开更多
关键词 amperometric immunosensor microelectromechanical systems self-assembled monolayers gold nanoparticles protein G human immunoglobulin
下载PDF
Glucose oxidase as a blocking agent-based signal amplification strategy for the fabrication of label-free amperometric immunosensors 被引量:3
3
作者 SONG ZhongJu YUAN Ruo +2 位作者 CHAI YaQin CHE Xin LV Ping 《Science China Chemistry》 SCIE EI CAS 2011年第3期536-544,共9页
An effective electrochemical signal amplification strategy based on enzyme membrane modification and redox probe immobilization was proposed to construct an amperometric immunosensor.L-cysteine@ferrocene functionalize... An effective electrochemical signal amplification strategy based on enzyme membrane modification and redox probe immobilization was proposed to construct an amperometric immunosensor.L-cysteine@ferrocene functionalized chitosan,which possessed not only efficient redox-activity but also excellent film-forming ability,was coated on the bare glass carbon electrode. Moreover,the thiol groups(SH)in the ferrocenyl compound were used for gold nanoparticles immobilization via the strong bonding interaction,which could further be utilized for the immobilization of antibody biomolecules with well-retained bioactivities.Finally,glucose oxidase(GOD)as the enzyme membrane was employed to block the possible remaining active sites and avoid the nonspecific adsorption.With the excellent electrocatalytic properties of GOD towards glucose,the amplification of antigen-antibody interaction and the enhanced sensitivity could be achieved.Under the optimal conditions,the linear range of the proposed immunosensor for the determination of carcinoembryonic antigen(CEA)was from 0.05 to 100 ng/mL with a detection limit of 0.02 ng/mL(S/N=3).Moreover,the immunosensor exhibited good selectivity,stability and reproducibility, which provided a promising potential for clinical immunoassay. 展开更多
关键词 amperometric immunosensor CHITOSAN gold colloidal nanoparticles(GNPs) Ferrocene-monocarboxylic(Fc-COOH) carcinoembryonic antigen(CEA)
原文传递
A micro amperometric immunosensor for detection of human immunoglobulin
4
作者 XU Yuanyuan XIA Shanhong BIAN Chao CHEN Shaofeng 《Science in China(Series F)》 2006年第3期397-408,共12页
A novel amperometric immunosensor based on the micro electromechanical systems (MEMS) technology, using protein A and self-assembled monolayers (SAMs) for the orientation-controlled immobilization of antibodies, h... A novel amperometric immunosensor based on the micro electromechanical systems (MEMS) technology, using protein A and self-assembled monolayers (SAMs) for the orientation-controlled immobilization of antibodies, has been developed. Using MEMS technology, an "Au, Pt, Pt" three-microelectrode system enclosed in a SU-8 micro pool was fabricated. Employing SAMs, a monolayer of protein A was immobilized on the cysteamine modified Au electrode to achieve the orientation-controlled immobilization of the human immunoglobulin (HIgG) antibody. The immunosensor aimed at low unit cost, small dimension, high level of integration and the prospect of a biosensor system-on-a-chip. Cyclic voltammetry and chronoamperometry were conducted to characterize the immunosensor. Compared with the traditional immunosensor using bulky gold electrode or screen-printed electrode and the procedure directly binding protein A to electrode for immobilization of antibodies, it had attractive advantages, such as miniaturization, compatibility with CMOS technology, fast response (30 s), broad linear range (50-400 pg/L) and low detection limit (10 pg/L) for HIgG. In addition, this immunosensor was easy to be designed into micro array and to realize the simultaneously multi-parameter detection. 展开更多
关键词 amperometric immunosensor micro electromechanical systems (MEMS) self-assembled monolay-ers (SAMs) protein A orientation-controlled immobilization biosensor system-on-a-chip.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部