Amphiphilic starch derivatives with high content of functional groups were prepared from potato starch using a one-pot synthesis method with a single reaction medium for the entire procedure. Potato starch was benzyla...Amphiphilic starch derivatives with high content of functional groups were prepared from potato starch using a one-pot synthesis method with a single reaction medium for the entire procedure. Potato starch was benzylated, followed by the introduction of hydroxypropyltrimethylammonium(HPMA) moieties without the purification of intermediates. The synthesis was performed under heterogeneous conditions, leading to the formation of benzyl 2-hydroxypropyltri methylammonium starch chloride(BnHPMAS) with a total degree of substitution(DS) of up to 1.4. This process improved the efficiency of the preparation of amphiphilic starch derivatives and reduced the time and resources consumed by avoiding a separation process and purification of the intermediate compounds.The DS of BnHPMAS was in the range of 0.36 to 1.4, which could be tuned by varying the molar ratio of the reagents to repeating unit or by changing the reaction temperature, time, and medium. The structure of the amphiphilic starches was characterized using elemental analysis, size exclusion chromatography,fourier transform infrared spectroscopy(FT-IR), and nuclear magnetic resonance(NMR) spectroscopy. Moreover, the surface tension and turbidity of the solutions of the products were measured for their potential application in the removal of dissolved and colloidal substances in paper cycling water.展开更多
基金financially supported by National Natural Science Foundation of China (No. 21774036)State Key Laboratory of Pulp and Paper Engineering (No. 2017TS01)
文摘Amphiphilic starch derivatives with high content of functional groups were prepared from potato starch using a one-pot synthesis method with a single reaction medium for the entire procedure. Potato starch was benzylated, followed by the introduction of hydroxypropyltrimethylammonium(HPMA) moieties without the purification of intermediates. The synthesis was performed under heterogeneous conditions, leading to the formation of benzyl 2-hydroxypropyltri methylammonium starch chloride(BnHPMAS) with a total degree of substitution(DS) of up to 1.4. This process improved the efficiency of the preparation of amphiphilic starch derivatives and reduced the time and resources consumed by avoiding a separation process and purification of the intermediate compounds.The DS of BnHPMAS was in the range of 0.36 to 1.4, which could be tuned by varying the molar ratio of the reagents to repeating unit or by changing the reaction temperature, time, and medium. The structure of the amphiphilic starches was characterized using elemental analysis, size exclusion chromatography,fourier transform infrared spectroscopy(FT-IR), and nuclear magnetic resonance(NMR) spectroscopy. Moreover, the surface tension and turbidity of the solutions of the products were measured for their potential application in the removal of dissolved and colloidal substances in paper cycling water.