Surface molecularly imprinted polymers (SMIPs) for selective adsorption of ampicillin sodium were synthesized using surface molecular imprinting technique with silica gel as a support. The physical and morphological...Surface molecularly imprinted polymers (SMIPs) for selective adsorption of ampicillin sodium were synthesized using surface molecular imprinting technique with silica gel as a support. The physical and morphological characteristics of the polymers were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), elemental analysis and nitrogen adsorption-desorption test. The obtained results showed that the SMIPs displayed great adsorption capacity (13.5 lag/mg), high recognition ability (the imprinted factor is 3.2) and good binding kinetics for ampicillin sodium. Finally, as solid phase extraction adsorbents, the SMIPs coupled with HPLC method were validated and applied for the enrichment, purification and determination of anapicillin sodium in real milk and blood samples. The averages of spiked accuracy ranged from 92.1% to 107.6%. The relative standard deviations of intra- and inter-day precisions were less than 4.6%. This study provides a new and promising method for enriching, extracting and determining ampicillin sodium in complex biological samples.展开更多
The stabilities of two kinds of solutions (30 mg/mL) of Ampicillin sodium in 0.9% NaCl in water (NS, normal saline) and in sterile water (SW) in the intravenous elastomeric infusion device (Accufuser®) were ev...The stabilities of two kinds of solutions (30 mg/mL) of Ampicillin sodium in 0.9% NaCl in water (NS, normal saline) and in sterile water (SW) in the intravenous elastomeric infusion device (Accufuser®) were evaluated based on recommended solutions and storage periods. The injectable NS- and SW-Ampicillin solutions in the Accufuser® device were stored and evaluated at controlled temperature (room temperature, 25℃ ± 2℃ and cold temperature, 4℃ ± 2℃) during 7 days. Effects of the periods of storage (from 0 to 7 days) and the temperatures of storage (RT and CT) on the physico-chemical appearances and concentrations of active compounds were determined. The visual clarity, pH, and concentrations of Ampicillin were determined by stability-indicating high-performance liquid chromatography (HPLC)-ultraviolet (UV) detection. The results showed that the amount of Ampicillin in studied solutions gradually decreased with time. The Ampicillin in NS, which was stored in CT, was relatively stable, retaining 94% of its original amount up to 7 days. The solution that showed least stability was Ampicillin in SW, which was stored in RT, retaining 80% of its original amount. Generally, solutions that were stored in CT were more stable than the solutions that were stored in RT. No significant changes in physical appearance or color of the solutions were observed during the study. Particles were not detected in any solution samples. In summary, two kinds of solutions of Ampicillin sodium, in NS and SW, showed different chemical stabilities with time in intravenous infusion device without any significant physical changes and retained about 94% vs 89% and 83% vs 80% of initial concentrations after 7 days in CT and RT, respectively. We suggest that 30 mg/mL of Ampicillin sodium in NS solution in an Accufuser® infusion device which is stored in CT can be applicable for 7 days in clinical situations.展开更多
The complexes formed by the interaction of human serum albumin and ampicillin sodium in aqueous solutions were investigated at 25 ± 0.1℃, ionic strength I = 0.085 mol·kg-1, pH 4.9, 5.8 and 7.4. The results ...The complexes formed by the interaction of human serum albumin and ampicillin sodium in aqueous solutions were investigated at 25 ± 0.1℃, ionic strength I = 0.085 mol·kg-1, pH 4.9, 5.8 and 7.4. The results of static light scattering have suggested that at pH 7.4, 5.8, 4.9, the molecular weight of the protein/drug complexes is 210,000 g·mol-1, 418,000 g·mol-1, 448,000 g·mol-1, re- spectively. The z-average root-mean-square radius of gyration and the second virial coefficients de- crease with pH decreasing. Dynamic light scattering provides information on diffusion coefficient and particle distributions of protein/drug complexes under different conditions, which suggests a broad hydrodynamic diameter range of scatters. The diffusion coefficients of the systems change with am- picillin sodium concentration and pH changing.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 81573391 and 81173024)the National Key Projects of China (No. 812277802)
文摘Surface molecularly imprinted polymers (SMIPs) for selective adsorption of ampicillin sodium were synthesized using surface molecular imprinting technique with silica gel as a support. The physical and morphological characteristics of the polymers were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), elemental analysis and nitrogen adsorption-desorption test. The obtained results showed that the SMIPs displayed great adsorption capacity (13.5 lag/mg), high recognition ability (the imprinted factor is 3.2) and good binding kinetics for ampicillin sodium. Finally, as solid phase extraction adsorbents, the SMIPs coupled with HPLC method were validated and applied for the enrichment, purification and determination of anapicillin sodium in real milk and blood samples. The averages of spiked accuracy ranged from 92.1% to 107.6%. The relative standard deviations of intra- and inter-day precisions were less than 4.6%. This study provides a new and promising method for enriching, extracting and determining ampicillin sodium in complex biological samples.
基金supported by Division of Molecular Therapeutics Development,Hanyang Biomedical Research Institute,Hanyang University and Woo Young Medical Co.LTD.,Seoul,South Korea.
文摘The stabilities of two kinds of solutions (30 mg/mL) of Ampicillin sodium in 0.9% NaCl in water (NS, normal saline) and in sterile water (SW) in the intravenous elastomeric infusion device (Accufuser®) were evaluated based on recommended solutions and storage periods. The injectable NS- and SW-Ampicillin solutions in the Accufuser® device were stored and evaluated at controlled temperature (room temperature, 25℃ ± 2℃ and cold temperature, 4℃ ± 2℃) during 7 days. Effects of the periods of storage (from 0 to 7 days) and the temperatures of storage (RT and CT) on the physico-chemical appearances and concentrations of active compounds were determined. The visual clarity, pH, and concentrations of Ampicillin were determined by stability-indicating high-performance liquid chromatography (HPLC)-ultraviolet (UV) detection. The results showed that the amount of Ampicillin in studied solutions gradually decreased with time. The Ampicillin in NS, which was stored in CT, was relatively stable, retaining 94% of its original amount up to 7 days. The solution that showed least stability was Ampicillin in SW, which was stored in RT, retaining 80% of its original amount. Generally, solutions that were stored in CT were more stable than the solutions that were stored in RT. No significant changes in physical appearance or color of the solutions were observed during the study. Particles were not detected in any solution samples. In summary, two kinds of solutions of Ampicillin sodium, in NS and SW, showed different chemical stabilities with time in intravenous infusion device without any significant physical changes and retained about 94% vs 89% and 83% vs 80% of initial concentrations after 7 days in CT and RT, respectively. We suggest that 30 mg/mL of Ampicillin sodium in NS solution in an Accufuser® infusion device which is stored in CT can be applicable for 7 days in clinical situations.
基金This work was supported by the National Natural Science Foundation of China (Grant No.20275014).
文摘The complexes formed by the interaction of human serum albumin and ampicillin sodium in aqueous solutions were investigated at 25 ± 0.1℃, ionic strength I = 0.085 mol·kg-1, pH 4.9, 5.8 and 7.4. The results of static light scattering have suggested that at pH 7.4, 5.8, 4.9, the molecular weight of the protein/drug complexes is 210,000 g·mol-1, 418,000 g·mol-1, 448,000 g·mol-1, re- spectively. The z-average root-mean-square radius of gyration and the second virial coefficients de- crease with pH decreasing. Dynamic light scattering provides information on diffusion coefficient and particle distributions of protein/drug complexes under different conditions, which suggests a broad hydrodynamic diameter range of scatters. The diffusion coefficients of the systems change with am- picillin sodium concentration and pH changing.