期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Helicity Amplitude Analysis of Z_c(3900)~± in e^+e^- →π^+π^-J/ψ
1
作者 平荣刚 J.G.Messchendorp 苑长征 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期9-11,共3页
It is crucial to determine the spin and parity (jR) of Zc(3900)+ for understanding its structure. We perform a helicity amplitude analysis on Zc(3900)+ in the process e+e- →π+π-J/φ* with the hypotheses ... It is crucial to determine the spin and parity (jR) of Zc(3900)+ for understanding its structure. We perform a helicity amplitude analysis on Zc(3900)+ in the process e+e- →π+π-J/φ* with the hypotheses JP = 0-, 1+, 1-, 2+ and 2-. To estimate the significance of JP = 1+ over other hypotheses, we perform a Monte Carlo simulation study, and we also discuss the prospect of measuring the spin parity in the future experiment with a large data sample. 展开更多
关键词 of on IS Helicity amplitude analysis of Z_c in e for that
下载PDF
Amplitude analysis of the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)
2
作者 M.Ablikim M.N.Achasov +642 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang W.L.Chang G.R.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi X.Chu G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng K.Fischer M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Z.H.Duan P.Egorov Y.H.Fan J.Fang JA.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan Z.L.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang T.Hussain F.H\"olzken N.H\"usken N.in der Wiesche M.Irshad J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui A.Kupsc W.K\"uhn J.J.Lane P.Larin L.Lavezzi T.T.Lei Z.H.Lei H.Leithoff M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li Y.G.Li Z.J.Li Z.X.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.P.Liao J.Libby A.Limphirat D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma X.T.Ma X.Y.Ma Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Malde A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak P.Patteri Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao J.J.Qin L.Q.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi R.S.Shi S.Y.Shi X.Shi X.D.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang Meng Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.Wei D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.C.Xu Z.P.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu X.D.Yu C.Z.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang P.Zhang Q.Y.Zhang S.H.Zhang Shulei Zhang X.D.Zhang X.M.Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao Lei Zhao M.G.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou J.Zhu K.Zhu K.J.Zhu L.Zhu L.X.Zhu S.H.Zhu S.Q.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 SCIE CAS CSCD 2024年第8期6-33,共28页
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays... Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay. 展开更多
关键词 BESIII D^(0)meson decays amplitude analysis CP-even fraction
原文传递
D^0-~0 mixing sensitivity estimation at Belle II in wrong-sign decays D^0→K^+π^-π~0 via time-dependent amplitude analysis
3
作者 李龙科 陈冶蕲 +1 位作者 鄢文标 张子平 《Chinese Physics C》 SCIE CAS CSCD 2017年第2期1-8,共8页
The sensitivity of the D^0-D^-0 mixing parameters x and y is estimated in the wrong-sign decay D^0→K^+π^-π^0 by time-dependent amplitude analysis. The resolution of the D^0 lifetime is essential in time-dependent ... The sensitivity of the D^0-D^-0 mixing parameters x and y is estimated in the wrong-sign decay D^0→K^+π^-π^0 by time-dependent amplitude analysis. The resolution of the D^0 lifetime is essential in time-dependent Dalitz analyses. The Belle II detector, which aims to collect a total integrated luminosity of 50 ab^-1 of data, has σ = 140 fs in Monte Carlo studies, a factor of two improvement over that of Belle and Ba Bar, so the produced Dalitz signal Monte Carlo samples are smeared with this resolution. Then a time-dependent Dalitz plot fitting is performed on these smeared samples, and the sensitivity of D^0-D^-0 mixing parameters are σx = 0.057% and σy = 0.049%. These are about an order of magnitude improvement on current experimental results, without considering background effects. 展开更多
关键词 D^0-D^-0 mixing sensitivity estimation time-dependent amplitude analysis wrong-sign decay Belle II
原文传递
A scheme to fix multiple solutions in amplitude analyses
4
作者 高原宁 荣天泽 +2 位作者 杨振伟 张辰佳 张艳席 《Chinese Physics C》 SCIE CAS CSCD 2024年第5期8-22,共15页
Decays of unstable heavy particles usually involve the coherent sum of several amplitudes,like in a multiple slit experiment.Dedicated amplitude analysis techniques have been widely used to resolve these amplitudes fo... Decays of unstable heavy particles usually involve the coherent sum of several amplitudes,like in a multiple slit experiment.Dedicated amplitude analysis techniques have been widely used to resolve these amplitudes for better understanding of the underlying dynamics.In special cases where two spin-1/2 particles and two(pseudo-)scalar particles are present in the process,multiple equivalent solutions are found owing to intrinsic symmetries in the summed probability density function.In this study,the problem of multiple solutions is discussed,and a scheme to overcome this problem is proposed by fixing some free parameters.Toys are generated to validate the strategy.A new approach to align the helicities of initial-and final-state particles in different decay chains is also introduced. 展开更多
关键词 amplitude analysis multiple solutions helicity formalism
原文传递
Detecting spatio-temporal urban surface changes using identified temporary coherent scatterers 被引量:1
5
作者 HU Fengming WU Jicang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1304-1317,共14页
Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection metho... Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection methods are conducted using couples of SAR amplitude images. However, a prior date of surface change is required to select a feasible image pair. We propose an automatic spatio-temporal change detection method by identifying the temporary coherent scatterers. Based on amplitude time series, χ^(2)-test and iterative single pixel change detection are proposed to identify all step-times: the moments of the surface change. Then the parameters, e.g., deformation velocity and relative height, are estimated and corresponding coherent periods are identified by using interferometric phase time series. With identified temporary coherent scatterers, different types of temporal surface changes can be classified using the location of the coherent periods and spatial significant changes are identified combining point density and F values. The main advantage of our method is automatically detecting spatio-temporal surface changes without prior information. Experimental results by the proposed method show that both appearing and disappearing buildings with their step-times are successfully identified and results by ascending and descending SAR images show a good agreement. 展开更多
关键词 change detection temporary coherent scatterer multi-temporal interferometric synthetic aperture radar(InSAR) amplitude analysis
下载PDF
Reverse-Time Migration from Rugged Topography to Image Ground-Penetrating Radar Data in Complex Environments 被引量:5
6
作者 John H. Bradford Janna Privette +1 位作者 David Wilkins Richard Ford 《Engineering》 2018年第5期661-666,共6页
In ground-penetrating radar (GPR) imaging, it is common for the depth of investigation to be on the same order as the variability in surface topography, In such cases, migration fails when it is carried out from a d... In ground-penetrating radar (GPR) imaging, it is common for the depth of investigation to be on the same order as the variability in surface topography, In such cases, migration fails when it is carried out from a datum after the application of elevation statics, We introduce a reverse-time migration (RTM) algorithm based on the second-order decoupled form of Maxwell's equations, which requires computation of only the electric field, The wavefield extrapolation is computed directly from the acquisition surface without the need for datuming, In a synthetic case study, the algorithm significantly improves image accuracy over a processing sequence in which migration is performed after elevation statics, In addition, we acquired a field dataset at the Coral Pink Sand Dunes (CPSD) in Utah, USA, The data were acquired over rugged topography and have the complex internal stratigraphy of multiply eroded, modern, and ancient eolian deposits, The RTM algorithm significantly improves radar depth images in this challenging environment, 展开更多
关键词 Ground-penetrating radar Reverse-time migration Sand dune amplitude analysis
下载PDF
A novel method to test particle ordering and final state alignment in helicity formalism 被引量:1
7
作者 Mengzhen Wang Yi Jiang +3 位作者 Yinrui Liu Wenbin Qian Xiao-Rui Lyu Liming Zhang 《Chinese Physics C》 SCIE CAS CSCD 2021年第6期29-36,共8页
In this study,the non-trival effect of the selection of reference particles for decay angle definitions is demonstrated when constructing the partial-wave amplitude of multi-body decays using helicity formalism.This i... In this study,the non-trival effect of the selection of reference particles for decay angle definitions is demonstrated when constructing the partial-wave amplitude of multi-body decays using helicity formalism.This issue is often ignored in the standard use case of helicity formalism.A new technique is proposed to test the selection of the particle ordering,and it can also be used as a generalized method to calculate the rotation operators that are used for the final-state alignment between different decay chains.Moreover,numerical validations are performed to support the arguments and to verify the effectiveness of the proposed technique. 展开更多
关键词 helicity formalism PENTAQUARK baryon final state partial-wave amplitude analysis
原文传递
Spatial variations of terrain and their impacts on landscape patterns in the transition zone from mountains to plains—A case study of Qihe River Basin in the Taihang Mountains 被引量:14
8
作者 Jingjing ZHANG Wenbo ZHU +4 位作者 Fang ZHAO Lianqi ZHU Maojuan LI Ming ZHU Xiaodong ZHANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第4期450-461,共12页
Terrain plays a key role in landscape pattern formation, particularly in the transition zones from mountains to plains.Exploring the relationships between terrain characteristics and landscape types in terrain-complex... Terrain plays a key role in landscape pattern formation, particularly in the transition zones from mountains to plains.Exploring the relationships between terrain characteristics and landscape types in terrain-complex areas can help reveal the mechanisms underlying the relationships. In this study, Qihe River Basin, situated in the transition zone from the Taihang Mountains to the North-China Plain, was selected as a case study area. First, the spatial variations in the relief amplitudes(i.e.,high-amplitude terrain undulations) were analyzed. Second, the effects of relief amplitudes on the landscape patterns were indepth investigated from the perspectives of both landscape types and landscape indices. Finally, a logistic regression model was employed to examine the relationships between the landscape patterns and the influencing factors(natural and human) at different relief amplitudes. The results show that with increasing relief amplitude, anthropogenic landscapes gradually give in to natral landscapes. Specifically, human factors normally dominate the gentle areas(e.g., flat areas) in influencing the distribution of landscape types, and natural factors normally dominate the highly-undulating areas(e.g., moderate relief areas). As for the intermediately undulating areas(i.e.,medium relief amplitudes), a combined influence of natural and human factors result in the highest varieties of landscape types. The results also show that in micro-relief areas and small relief areas where natural factors and human factors are more or less equally active,landscape types are affected by a combination of natural and human factors.The combination leads to a high fragmentation and a high diversity of landscape patterns. It seems that appropriate human interferences in these areas can be conducive to enhancing landscape diversity and that inappropriate human interferences can aggravate the problems of landscape fragmentation. 展开更多
关键词 Transition zone Relief amplitude Mean turning-point analysis Landscape pattern Logistic regression analysis Taihang Mountains
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部