In this paper, a novel anti-interference direction finding(DF)method for amplitude comparison method based on cyclostationarity is proposed. With the periodic properties of the communication signals, the desired signa...In this paper, a novel anti-interference direction finding(DF)method for amplitude comparison method based on cyclostationarity is proposed. With the periodic properties of the communication signals, the desired signal’s amplitude value can be effectively obtained even though there is an interference signal whose frequency spectrum overlaps with the desired signal in the environment,and the corresponding incident angle can be estimated accurately with the amplitude comparison method. The influence of interference signal on the amplitude comparison method is discussed and the proposed method’s theoretical feasibility is also analyzed. Compared with the conventional method,simulations are provided to demonstrate the anti-interference capability of the proposed method. The amplitude comparison DF system working at 2.44 GHz and 5.8 GHz is also constructed to verify its feasibility.展开更多
基金the National Natural Science Foundation of China(62001291)the National Natural Science Foundation of China(61901263)+1 种基金the Joint Foundation of Key Laboratory of Shanghai Jiao Tong universityXidian University,Ministry of Education(LHJJ/2021-09)the Shanghai Science and Technology Innovation Action Plan(20511106605)。
文摘In this paper, a novel anti-interference direction finding(DF)method for amplitude comparison method based on cyclostationarity is proposed. With the periodic properties of the communication signals, the desired signal’s amplitude value can be effectively obtained even though there is an interference signal whose frequency spectrum overlaps with the desired signal in the environment,and the corresponding incident angle can be estimated accurately with the amplitude comparison method. The influence of interference signal on the amplitude comparison method is discussed and the proposed method’s theoretical feasibility is also analyzed. Compared with the conventional method,simulations are provided to demonstrate the anti-interference capability of the proposed method. The amplitude comparison DF system working at 2.44 GHz and 5.8 GHz is also constructed to verify its feasibility.