We show an example of a bounded potential on the half-line obtained as the image of an Inverse Transformation Operator of the Bessel singular potential of the Reduced Radial Schrödinger Equation, and show us ...We show an example of a bounded potential on the half-line obtained as the image of an Inverse Transformation Operator of the Bessel singular potential of the Reduced Radial Schrödinger Equation, and show us the Estimates of the A(α) amplitude.展开更多
Space-time adaptive processing(STAP) has been proven to be one of the best techniques capable of detecting weak moving targets in strong clutter environment and has been widely applied in airborne ground moving targ...Space-time adaptive processing(STAP) has been proven to be one of the best techniques capable of detecting weak moving targets in strong clutter environment and has been widely applied in airborne ground moving target indication(GMTI) radar.This paper applies an amplitude and phase estimation(APES) approach to two aspects of the STAP algorithm.Firstly,APES is applied to accurately describe the clutter characteristic in angle-Doppler domain.Then,APES is incorporated into the standard STAP algorithm to improve its performance without increasing transmitting/receiving channel and pulse number.The experimental examples show that the detection performance can be improved by using the APES technique,as well as the high computational complexity can be avoided.展开更多
In a test of the weak equivalence principle (WEP) with a rotating torsion pendulum, it is important to estimate the amplitude of the modulation signal with high precision. We use a torsional filter to remove the fre...In a test of the weak equivalence principle (WEP) with a rotating torsion pendulum, it is important to estimate the amplitude of the modulation signal with high precision. We use a torsional filter to remove the free oscillation signal and employ the correlation method to estimate the amplitude of the modulation signal. The data analysis of an experiment shows that the uncertainties of amplitude components of the modulation signal obtained by the correlation method are in agreement with those due to white noise. The power spectral density of the modulation signal obtained by the correlation method is about one order higher than the thermal noise limit. It indicates that the correlation method is an effective way to estimate the amplitude of the modulation signal and it is instructive to conduct a high-accuracy WEP test.展开更多
This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) d...This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) direction of arrival, namely, azimuth and elevation angles. The proposed approach is based on memetic computation, in which the global optimizer, particle swarm optimization is hybridized with a rapid local search technique, pattern search. For this purpose, a new multi-objective fitness function is used. This fitness function is the combination of mean square error and the correlation between the normalized desired and estimated vectors. The proposed hybrid scheme is not only compared with individual performances of particle swarm optimization and pattern search, but also with the performance of the hybrid genetic algorithm and that of the traditional approach. A large number of Monte-Carlo simulations are carried out to validate the performance of the proposed scheme. It gives promising results in terms of estimation accuracy, convergence rate, proximity effect and robustness against noise.展开更多
As one of the major methods for the simulation of option pricing,Monte Carlo method assumes random fluctuations in the distribution of asset prices.Under certain uncertainties process,different evolution paths could b...As one of the major methods for the simulation of option pricing,Monte Carlo method assumes random fluctuations in the distribution of asset prices.Under certain uncertainties process,different evolution paths could be simulated so as to finally yield the expectation value of the asset price,which requires a lot of simulations to ensure the accuracy based on huge and expensive calculations.In order to solve the above computational problem,quantum Monte Carlo(QMC)has been established and applied in the relevant systems such as European call options.In this work,both MC and QM methods are adopted to simulate European call options.Based on the preparation of quantum states in QMC algorithm and the construction of quantum circuits by simulating a quantum hardware environment on a traditional computer,the amplitude estimation(AE)algorithm is found to play a secondary role in accelerating the pricing of European options.More importantly,the payoff function and the time required for the simulation in QMC method show some improvements than those in MC method.展开更多
文摘We show an example of a bounded potential on the half-line obtained as the image of an Inverse Transformation Operator of the Bessel singular potential of the Reduced Radial Schrödinger Equation, and show us the Estimates of the A(α) amplitude.
文摘Space-time adaptive processing(STAP) has been proven to be one of the best techniques capable of detecting weak moving targets in strong clutter environment and has been widely applied in airborne ground moving target indication(GMTI) radar.This paper applies an amplitude and phase estimation(APES) approach to two aspects of the STAP algorithm.Firstly,APES is applied to accurately describe the clutter characteristic in angle-Doppler domain.Then,APES is incorporated into the standard STAP algorithm to improve its performance without increasing transmitting/receiving channel and pulse number.The experimental examples show that the detection performance can be improved by using the APES technique,as well as the high computational complexity can be avoided.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575160,91636221,and 11605065)
文摘In a test of the weak equivalence principle (WEP) with a rotating torsion pendulum, it is important to estimate the amplitude of the modulation signal with high precision. We use a torsional filter to remove the free oscillation signal and employ the correlation method to estimate the amplitude of the modulation signal. The data analysis of an experiment shows that the uncertainties of amplitude components of the modulation signal obtained by the correlation method are in agreement with those due to white noise. The power spectral density of the modulation signal obtained by the correlation method is about one order higher than the thermal noise limit. It indicates that the correlation method is an effective way to estimate the amplitude of the modulation signal and it is instructive to conduct a high-accuracy WEP test.
文摘This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) direction of arrival, namely, azimuth and elevation angles. The proposed approach is based on memetic computation, in which the global optimizer, particle swarm optimization is hybridized with a rapid local search technique, pattern search. For this purpose, a new multi-objective fitness function is used. This fitness function is the combination of mean square error and the correlation between the normalized desired and estimated vectors. The proposed hybrid scheme is not only compared with individual performances of particle swarm optimization and pattern search, but also with the performance of the hybrid genetic algorithm and that of the traditional approach. A large number of Monte-Carlo simulations are carried out to validate the performance of the proposed scheme. It gives promising results in terms of estimation accuracy, convergence rate, proximity effect and robustness against noise.
基金This work was financially supported by the National Natural Science Foundation of China Granted No.11764028。
文摘As one of the major methods for the simulation of option pricing,Monte Carlo method assumes random fluctuations in the distribution of asset prices.Under certain uncertainties process,different evolution paths could be simulated so as to finally yield the expectation value of the asset price,which requires a lot of simulations to ensure the accuracy based on huge and expensive calculations.In order to solve the above computational problem,quantum Monte Carlo(QMC)has been established and applied in the relevant systems such as European call options.In this work,both MC and QM methods are adopted to simulate European call options.Based on the preparation of quantum states in QMC algorithm and the construction of quantum circuits by simulating a quantum hardware environment on a traditional computer,the amplitude estimation(AE)algorithm is found to play a secondary role in accelerating the pricing of European options.More importantly,the payoff function and the time required for the simulation in QMC method show some improvements than those in MC method.