The principle of ocean wave spectrometers was first presented several decades ago to detect the directional wave spectrum with real-aperture radar(Jackson,1981). To invert wave spectra using an ocean wave spectrometer...The principle of ocean wave spectrometers was first presented several decades ago to detect the directional wave spectrum with real-aperture radar(Jackson,1981). To invert wave spectra using an ocean wave spectrometer,for simplicity,the hydrodynamic forcing and wave-wave interaction effect are neglected and a Gaussian slope probability density function(pdf) is used to calculate the normalized backscattering cross-section( σ 0) of the ocean surface. However,the real sea surface is non-Gaussian. It is not known whether the non-Gaussian property of the sea surface will affect the performance of the inversion of the wave spectrum if following existing inversion steps and methods. In this paper,the pdf of the sea surface slope is expressed as a Gram-Charlier fourth-order expansion,which is quasi-Gaussian. The modulation transfer function(MTF) is derived for a non-Gaussian slope pdf. The effects of non-Gaussian properties of the sea surface slope on the inversion process and result are then studied in a simulation of the SWIM(Surface Waves Investigation and Monitoring) instrument configuration to be used on the CFOSAT(China-France Oceanography Satellite) mission. The simulation results show that the mean trend of σ 0 depends on the sea slope pdf,and the peakedness and skewness coefficients of the slope pdf affect the shape of the mean trend of σ 0 versus incidence and azimuth; owing to high resolution of σ 0 in the range direction,MTF obtained using the mean trend of σ 0 is almost as accurate as that set in the direct simulation; in the inversion,if ignoring the non-Gaussian assumption,the inversion performances for the wave spectrum decrease,as seen for an increase in the energy error of the inverted wave slope spectrum. However,the peak wavelength and wave direction are the same for inversions that consider and ignore the non-Gaussian property.展开更多
In conventional marine seismic exploration data processing,the sea surface is usually treated as a horizontal free boundary.However,the sea surface is affected by wind and waves and there often exists dynamic small-ra...In conventional marine seismic exploration data processing,the sea surface is usually treated as a horizontal free boundary.However,the sea surface is affected by wind and waves and there often exists dynamic small-range fluctuations.These dynamic fluctuations will change the energy propagation path and affect the final imaging results.In theoretical research,different sea surface conditions need to be described,so it is necessary to study the modeling method of dynamic undulating sea surface.Starting from the commonly used sea surface mathematical simulation methods,this paper mainly studies the realization process of simple harmonic wave and Gerstner wave sea surface simulation methods based on ocean wave spectrum,and compares their advantages and disadvantages.Aiming at the shortcomings of the simple harmonic method and Gerstner method in calculational speed and sea surface simulation effect,a method based on wave equation and using dynamic boundary conditions for sea surface simulation is proposed.The calculational speed of this method is much faster than the commonly used simple harmonic method and Gerstner wave method.In addition,this paper also compares the new method with the more commonly used higher-order spectral methods to show the characteristics of the improved wave equation method.展开更多
Based on the finite element method,the angled surface defects have been investigated by using the laser generated surface acoustic wave(SAW).The feature of laser generated SAW interaction with the angled defect is ana...Based on the finite element method,the angled surface defects have been investigated by using the laser generated surface acoustic wave(SAW).The feature of laser generated SAW interaction with the angled defect is analyzed in time and frequency domains.An increase in the amplitude of SAW at the edge of the defect is observed,and the spectral feature is angle dependent.With the angle decreasing from 120°to 30°,the maximum amplitude of frequency spectrum of SAW increases gradually.The corresponding experimental results verify the feasibility of numerical analyses and reach a good agreement with simulation results.展开更多
A series of experiments on the instability of steeP water wave trains in water with finite water depths and infinite water depths in a wide wave basin were performed. It was found that under the coupled development of...A series of experiments on the instability of steeP water wave trains in water with finite water depths and infinite water depths in a wide wave basin were performed. It was found that under the coupled development of modulational instability and class-Ⅱ instability, the initial two-dimensional steep wave trains evolved into three'dimensional crescent waves, followed by the occurrence of disordered water surfaces, and that the wave energy transferred to sidebands in the amplitude spectrum of the water surface elevation. The results also show that water depth has a significant effect on the growth of modulational instability and the evolutiin of crescent waves. The larger the water depth, the more quickly the modulational instability suppresses class-II instability.展开更多
Based on the skewness of sea waves, a modified two-scale model is developed for the non-Gaussian sea surface scattering. In this new model, a complementary term is added to the first-order scattering coefficient of th...Based on the skewness of sea waves, a modified two-scale model is developed for the non-Gaussian sea surface scattering. In this new model, a complementary term is added to the first-order scattering coefficient of the classical small perturbation method (SPM), the additional part is proportional to the surface bispectrum and it is the critical part in explaining the scattering difference between upwind and downwind observations. Meanwhile, the effects of the shadowing function of the anisotropic surface, the curvature of the surface are also taken into account. The numerical results show the theoretical estimates obtained are consistent with the experimental result, and the influence of the wind speed, the trend and the incident frequency on the backscattering coefficients from the non-Gaussian oceanic surface is discussed in detail.展开更多
In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions was developed in inviscid fluids to investigate the motion of single free surface standing wave inc...In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions was developed in inviscid fluids to investigate the motion of single free surface standing wave including the effect of surface tension. A nonlinear slowly varying amplitude equation, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from potential flow equation. The results show that, when forced frequency is lower, the effect of surface ten- sion on mode selection of surface wave is not important. However, when forced frequency is higher, the surface tension can not be neglected. This proved that the surface tension causes free surface returning to equilibrium location. In addition, due to considering the effect of surface tension, the theoretical result approaches to experimental results much more than that of no surface tension.展开更多
Successive waveforms of the vertical component recorded by 888 broadband seismic stations in the China Seismography Network from January,2010 to June,2011 are used to investigate the temporal and spatial distribution ...Successive waveforms of the vertical component recorded by 888 broadband seismic stations in the China Seismography Network from January,2010 to June,2011 are used to investigate the temporal and spatial distribution of ambient noise intensity,and the images of ambient noise intensity at the period of 10 s in the Chinese Mainland are obtained. The temporal variation of ambient noise intensity shows some seasonal and periodic characteristics. The maximum ambient noise intensity occurred from January,2011 to March,2011. The spatial distribution images of ambient noise intensity show obvious zoning features,which doesnt correlate with surface geology,suggesting that the noise field is stronger than the site factors. The strength in southeastern coastal areas reaches its maximum and generally decreases toward to inland areas,and arrives at the minimum in the Qinghai-Tibetan Plateau. The zonal intensity distribution is probably correlated with ocean tides from the Philippine Ocean and the Pacific Ocean. It also shows that the influence from the Indian Ocean seems small. However, the ambient noise intensity increases to a certain degree in the Xinjiang area,indicating that the main source of ambient noise in the western area of the Chinese Mainland is not derived from the East and South China Sea,but rather from the deep interior of the Eurasian continent. The ambient noise intensity obtained in this study can supply reference for seismology research based on ambient noise correlation. Moreover,it can supply basic data for attenuation research based on ambient noise, and thus help achieve the object of retrieving the attenuation of Rayleigh waves from ambient noise.展开更多
Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investig...Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investigates the non-destructive capability of ultrasonic shear-wave spectroscopy in absolute stress evaluation of steel members.The effect of steel-member stress on the shear-wave amplitude spectrum is investigated,and a method of absolute stress measurement is proposed.Specifically,the process for evaluating absolute stress using shear-wave spectroscopy is summarized.Two steel members are employed to investigate the relationship between the stress and the frequency in shear-wave echo amplitude spectrum.The H-beam loaded by the universal testing machine is evaluated by the proposed method and the traditional strain gauge method for verification.The results show that the proposed method is effective and accurate for determining absolute stress in steel members.展开更多
An ocean surface wave spectrum which is used for low frequency ambient noise in deep water is proposed. It explains the mechanism of low frequency ambient noise from the theoretical relation between the spectrum of so...An ocean surface wave spectrum which is used for low frequency ambient noise in deep water is proposed. It explains the mechanism of low frequency ambient noise from the theoretical relation between the spectrum of sound pressure and wave. Combining the surface wave spectrum and local wind speed in deep water, a theoretical expression of low frequency ambient noise is obtained with wave generated noise theory. Simulation results show that the wave spectrum is crucial to the intensity and the spectral slope of radiated noise spectrum,and the theoretical noise spectrum could be used to predict the ambient noise in deep water.The predicting results axe verified through the experimental data recorded by an ocean bottom seismometer that was deployed on the floor of deep water in April 2016. It is observed that the statistical noise levels from the experimental data for frequencies from 1 Hz to 100 Hz are larger than 70 dB, and the low frequency ambient noise spectrum follows the shape of inverted"N",the valley of noise spectrum is at 3-4 Hz, and the noise intensity is 70 dB. The peak of noise spectrum is at 50 Hz, and the noise intensity is 92 dB. The correlation coefficient is 0.95 between the model spectrum and measured data.展开更多
Crescent waves often observed on the sea surface are unusual wave pattern induced by the instability of Stokes wave.The paper presents the experimental results of the wave field around a circular cylinder generated by...Crescent waves often observed on the sea surface are unusual wave pattern induced by the instability of Stokes wave.The paper presents the experimental results of the wave field around a circular cylinder generated by the diffraction of crescent wave in order to examine the difference of diffracted crescent waves from the commonly-used diffracted Stokes waves. The results show that with the existence of the cylinder, the crescent wave pattern can still get fully developed, and with the presence of this type of wave pattern, the symmetry breaking of the wave amplitude distribution occurs and there are extra wave components at the frequencies of 0.5 ω;, 1.5ω;and 2.5ω;(ω;is the frequency of Stokes waves) appearing in the wave amplitude spectrum.展开更多
To determine the amplitude of weak sinusoidal water surface acoustic wave (WSAW), a method based on the spectrum analysis of the phase-modulated interference signal is developed. Calculated from the amplitude spec- ...To determine the amplitude of weak sinusoidal water surface acoustic wave (WSAW), a method based on the spectrum analysis of the phase-modulated interference signal is developed. Calculated from the amplitude spec- trum of the detection signal, a characteristic ratio indicates that the phase-modulation depth of a WSAW is suggested by determining the amplitude of a WSAW according to their functional relationship. Experimental investigations for a 4 kHz WSAW evaluate the measurement's precision with an amplitude measurement stan- dard deviation of 0.12 nm. The measurement accuracy also is demonstrated by the experimental investigations. The theory of this method is briefly described, and the experimental setup is presented.展开更多
An effective approach in solving the sea clutter spectrum extraction problem is studied in the paper.Different from the conventional signal to noise ratio(SNR)method based on Doppler frequency or range domain inform...An effective approach in solving the sea clutter spectrum extraction problem is studied in the paper.Different from the conventional signal to noise ratio(SNR)method based on Doppler frequency or range domain information,a method is developed to characterize the differences between the sea echo and those interferences are by signal to interference plus noise ratio(SINR)which jointly utilizing the range,Doppler frequency and azimuth domain information.Furthermore,these differences can be adaptable to adverse conditions by forming the necessary boundaries and constraints in searching of the maximum SINR,which greatly promotes the extraction of sea clutter spectrum.The real high frequency surface wave radar(HFSWR)data demonstrate that the proposed method is less influenced by those interferences and can effectively extract the sea clutter spectrum even under the adverse conditions.Furthermore,it has been shown as an effective method for ship detection and sea state remote sensing of HFSWR.展开更多
The 2008 Wenchuan earthquake has a significant impact on the seismicity of nearby regions. The Longnan earthquake which occurred on September 12,2008 in Gansu Province was out of the aftershock zone. Reliable source p...The 2008 Wenchuan earthquake has a significant impact on the seismicity of nearby regions. The Longnan earthquake which occurred on September 12,2008 in Gansu Province was out of the aftershock zone. Reliable source parameters are essential for understanding the seismogenic process of this earthquake. Therefore,three approaches are adopted to study the source parameters of this event. The focal mechanism is obtained with the g CAP method that takes non-Double-Couple(non-DC)component into account. The two fault planes are NP1:150°/45°/81° and NP2:342°/45°/98°,while the non-DC component is about 53%. The focal depth is 1. 6 km,which indicates the Longnan earthquake is a shallow event. Furthermore,this result is also in good agreement with results obtained with two other approaches:amplitude spectra of Rayleigh wave and surface displacement from In SAR measurement. To analyze the cause of the event,coulomb failure stress change caused by the Wenchuan earthquake on the Longnan earthquake fault plane is calculated. The result shows that coulomb stress change is 30 k Pa around the Longnan earthquake hypocenter,which exceeds the typical triggering threshold of 10 k Pa. The research indicates that the Wenchuan earthquake probably promote the happening of the Longnan earthquake.展开更多
A new simple two-scale model on the polarimetric microwave emission of ocean surface is derived at first, which can be ex-pressed as an integral of weighting functions (M0 and M2) and ocean surface curvature spectrum ...A new simple two-scale model on the polarimetric microwave emission of ocean surface is derived at first, which can be ex-pressed as an integral of weighting functions (M0 and M2) and ocean surface curvature spectrum coefficients (C0 and C2). This provides a simple way to investigate the effect of curvature spectrum on ocean emission. It is found that ocean waves with wavelengths both comparable to and much greater than the electromagnetic wavelength can contribute to the harmonics of ocean surface microwave emission, depending on the magnitude of the ocean surface spectrum in these length scales. Bright-ness temperature predictions differ significantly due to present diverse spectrum models, and thus a study on wave spectrum obtained inversely from brightness temperature measurements is necessary. From the ocean surface radiation data measured by polarimetric microwave radiometer, we derived an ocean wave spectrum with a wider wave number range, using the proposed two-scale model and constrained linear least-squares method. The derived ocean wave spectrum is useful for comparing with present diverse models.展开更多
基金Supported by the National Science Foundation of China(No.40971185)the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)
文摘The principle of ocean wave spectrometers was first presented several decades ago to detect the directional wave spectrum with real-aperture radar(Jackson,1981). To invert wave spectra using an ocean wave spectrometer,for simplicity,the hydrodynamic forcing and wave-wave interaction effect are neglected and a Gaussian slope probability density function(pdf) is used to calculate the normalized backscattering cross-section( σ 0) of the ocean surface. However,the real sea surface is non-Gaussian. It is not known whether the non-Gaussian property of the sea surface will affect the performance of the inversion of the wave spectrum if following existing inversion steps and methods. In this paper,the pdf of the sea surface slope is expressed as a Gram-Charlier fourth-order expansion,which is quasi-Gaussian. The modulation transfer function(MTF) is derived for a non-Gaussian slope pdf. The effects of non-Gaussian properties of the sea surface slope on the inversion process and result are then studied in a simulation of the SWIM(Surface Waves Investigation and Monitoring) instrument configuration to be used on the CFOSAT(China-France Oceanography Satellite) mission. The simulation results show that the mean trend of σ 0 depends on the sea slope pdf,and the peakedness and skewness coefficients of the slope pdf affect the shape of the mean trend of σ 0 versus incidence and azimuth; owing to high resolution of σ 0 in the range direction,MTF obtained using the mean trend of σ 0 is almost as accurate as that set in the direct simulation; in the inversion,if ignoring the non-Gaussian assumption,the inversion performances for the wave spectrum decrease,as seen for an increase in the energy error of the inverted wave slope spectrum. However,the peak wavelength and wave direction are the same for inversions that consider and ignore the non-Gaussian property.
基金The General Program of National Natural Science Foundation of China under contract No.42074150the National Key Research and Development Project under contract No.2017YFC0601305。
文摘In conventional marine seismic exploration data processing,the sea surface is usually treated as a horizontal free boundary.However,the sea surface is affected by wind and waves and there often exists dynamic small-range fluctuations.These dynamic fluctuations will change the energy propagation path and affect the final imaging results.In theoretical research,different sea surface conditions need to be described,so it is necessary to study the modeling method of dynamic undulating sea surface.Starting from the commonly used sea surface mathematical simulation methods,this paper mainly studies the realization process of simple harmonic wave and Gerstner wave sea surface simulation methods based on ocean wave spectrum,and compares their advantages and disadvantages.Aiming at the shortcomings of the simple harmonic method and Gerstner method in calculational speed and sea surface simulation effect,a method based on wave equation and using dynamic boundary conditions for sea surface simulation is proposed.The calculational speed of this method is much faster than the commonly used simple harmonic method and Gerstner wave method.In addition,this paper also compares the new method with the more commonly used higher-order spectral methods to show the characteristics of the improved wave equation method.
基金supported by the National Natural Science Foundation of China(No.51505220)
文摘Based on the finite element method,the angled surface defects have been investigated by using the laser generated surface acoustic wave(SAW).The feature of laser generated SAW interaction with the angled defect is analyzed in time and frequency domains.An increase in the amplitude of SAW at the edge of the defect is observed,and the spectral feature is angle dependent.With the angle decreasing from 120°to 30°,the maximum amplitude of frequency spectrum of SAW increases gradually.The corresponding experimental results verify the feasibility of numerical analyses and reach a good agreement with simulation results.
基金supported by the National Natural Science Foundation of China(Grant No.51079024)the National Foundation for Creative Research Groups(Grant No.50921001)
文摘A series of experiments on the instability of steeP water wave trains in water with finite water depths and infinite water depths in a wide wave basin were performed. It was found that under the coupled development of modulational instability and class-Ⅱ instability, the initial two-dimensional steep wave trains evolved into three'dimensional crescent waves, followed by the occurrence of disordered water surfaces, and that the wave energy transferred to sidebands in the amplitude spectrum of the water surface elevation. The results also show that water depth has a significant effect on the growth of modulational instability and the evolutiin of crescent waves. The larger the water depth, the more quickly the modulational instability suppresses class-II instability.
文摘Based on the skewness of sea waves, a modified two-scale model is developed for the non-Gaussian sea surface scattering. In this new model, a complementary term is added to the first-order scattering coefficient of the classical small perturbation method (SPM), the additional part is proportional to the surface bispectrum and it is the critical part in explaining the scattering difference between upwind and downwind observations. Meanwhile, the effects of the shadowing function of the anisotropic surface, the curvature of the surface are also taken into account. The numerical results show the theoretical estimates obtained are consistent with the experimental result, and the influence of the wind speed, the trend and the incident frequency on the backscattering coefficients from the non-Gaussian oceanic surface is discussed in detail.
基金Project supported by the National Natural Science Foundation of China (Nos.19772063 and 19772068) and the Doctoral Research Fund of the Ministry of Education (No.20010141024)
文摘In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions was developed in inviscid fluids to investigate the motion of single free surface standing wave including the effect of surface tension. A nonlinear slowly varying amplitude equation, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from potential flow equation. The results show that, when forced frequency is lower, the effect of surface ten- sion on mode selection of surface wave is not important. However, when forced frequency is higher, the surface tension can not be neglected. This proved that the surface tension causes free surface returning to equilibrium location. In addition, due to considering the effect of surface tension, the theoretical result approaches to experimental results much more than that of no surface tension.
基金funded by the“Track Research on Strong Earthquake Risk along Southern Segment of the Longmenshan Fault Zone by Seismological Method(2014IES0100103)”“Dynamic Stress Response of Typical Faults in Reservoir Area to Reservoir Filling and Water Level Variation(2015IES010305)”special projects of basic scientific research of Institute of Earthquake Science,China Earthquake Administration and Joint Inversion of Crustal Upper Mantle Structure in the Taiwan Straits and Its Surrounding Area,Natural Science Foundation of China(NSFC4127405)
文摘Successive waveforms of the vertical component recorded by 888 broadband seismic stations in the China Seismography Network from January,2010 to June,2011 are used to investigate the temporal and spatial distribution of ambient noise intensity,and the images of ambient noise intensity at the period of 10 s in the Chinese Mainland are obtained. The temporal variation of ambient noise intensity shows some seasonal and periodic characteristics. The maximum ambient noise intensity occurred from January,2011 to March,2011. The spatial distribution images of ambient noise intensity show obvious zoning features,which doesnt correlate with surface geology,suggesting that the noise field is stronger than the site factors. The strength in southeastern coastal areas reaches its maximum and generally decreases toward to inland areas,and arrives at the minimum in the Qinghai-Tibetan Plateau. The zonal intensity distribution is probably correlated with ocean tides from the Philippine Ocean and the Pacific Ocean. It also shows that the influence from the Indian Ocean seems small. However, the ambient noise intensity increases to a certain degree in the Xinjiang area,indicating that the main source of ambient noise in the western area of the Chinese Mainland is not derived from the East and South China Sea,but rather from the deep interior of the Eurasian continent. The ambient noise intensity obtained in this study can supply reference for seismology research based on ambient noise correlation. Moreover,it can supply basic data for attenuation research based on ambient noise, and thus help achieve the object of retrieving the attenuation of Rayleigh waves from ambient noise.
基金supported by the National Key Research and Development Program of China (No. 2016YFC0701102)the National Nature Science Foundation of China(No.51538003)the Shenzhen Technology Innovation Program (No.JSGG20150330103937411)
文摘Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investigates the non-destructive capability of ultrasonic shear-wave spectroscopy in absolute stress evaluation of steel members.The effect of steel-member stress on the shear-wave amplitude spectrum is investigated,and a method of absolute stress measurement is proposed.Specifically,the process for evaluating absolute stress using shear-wave spectroscopy is summarized.Two steel members are employed to investigate the relationship between the stress and the frequency in shear-wave echo amplitude spectrum.The H-beam loaded by the universal testing machine is evaluated by the proposed method and the traditional strain gauge method for verification.The results show that the proposed method is effective and accurate for determining absolute stress in steel members.
基金supported by the National Natural Science Foundation of China(11125420,11434012 and41561144006)
文摘An ocean surface wave spectrum which is used for low frequency ambient noise in deep water is proposed. It explains the mechanism of low frequency ambient noise from the theoretical relation between the spectrum of sound pressure and wave. Combining the surface wave spectrum and local wind speed in deep water, a theoretical expression of low frequency ambient noise is obtained with wave generated noise theory. Simulation results show that the wave spectrum is crucial to the intensity and the spectral slope of radiated noise spectrum,and the theoretical noise spectrum could be used to predict the ambient noise in deep water.The predicting results axe verified through the experimental data recorded by an ocean bottom seismometer that was deployed on the floor of deep water in April 2016. It is observed that the statistical noise levels from the experimental data for frequencies from 1 Hz to 100 Hz are larger than 70 dB, and the low frequency ambient noise spectrum follows the shape of inverted"N",the valley of noise spectrum is at 3-4 Hz, and the noise intensity is 70 dB. The peak of noise spectrum is at 50 Hz, and the noise intensity is 92 dB. The correlation coefficient is 0.95 between the model spectrum and measured data.
基金financially supported by the National Natural Science Fundation of China(Grant No.51879237)the Research Start Fund of Zhejiang Ocean University(Grant No.11185010817)
文摘Crescent waves often observed on the sea surface are unusual wave pattern induced by the instability of Stokes wave.The paper presents the experimental results of the wave field around a circular cylinder generated by the diffraction of crescent wave in order to examine the difference of diffracted crescent waves from the commonly-used diffracted Stokes waves. The results show that with the existence of the cylinder, the crescent wave pattern can still get fully developed, and with the presence of this type of wave pattern, the symmetry breaking of the wave amplitude distribution occurs and there are extra wave components at the frequencies of 0.5 ω;, 1.5ω;and 2.5ω;(ω;is the frequency of Stokes waves) appearing in the wave amplitude spectrum.
基金supported by the National Natural Science Foundation of China under Grant No.61108073
文摘To determine the amplitude of weak sinusoidal water surface acoustic wave (WSAW), a method based on the spectrum analysis of the phase-modulated interference signal is developed. Calculated from the amplitude spec- trum of the detection signal, a characteristic ratio indicates that the phase-modulation depth of a WSAW is suggested by determining the amplitude of a WSAW according to their functional relationship. Experimental investigations for a 4 kHz WSAW evaluate the measurement's precision with an amplitude measurement stan- dard deviation of 0.12 nm. The measurement accuracy also is demonstrated by the experimental investigations. The theory of this method is briefly described, and the experimental setup is presented.
基金Supported by the National Natural Science Foundation of China(61501131,61171180)National Marine Technology Program for Public Welfare(201505002)Fundamental Research Funds for the Central Universities(HIT.MKSTISP.2016 26)
文摘An effective approach in solving the sea clutter spectrum extraction problem is studied in the paper.Different from the conventional signal to noise ratio(SNR)method based on Doppler frequency or range domain information,a method is developed to characterize the differences between the sea echo and those interferences are by signal to interference plus noise ratio(SINR)which jointly utilizing the range,Doppler frequency and azimuth domain information.Furthermore,these differences can be adaptable to adverse conditions by forming the necessary boundaries and constraints in searching of the maximum SINR,which greatly promotes the extraction of sea clutter spectrum.The real high frequency surface wave radar(HFSWR)data demonstrate that the proposed method is less influenced by those interferences and can effectively extract the sea clutter spectrum even under the adverse conditions.Furthermore,it has been shown as an effective method for ship detection and sea state remote sensing of HFSWR.
基金sponsored by the State Key Laboratory of Geodesy and Earth’s Dynamics,Institute of Geodesy and Geophysics,Chinese Academy of Sciences(SKLGED2018-4-1-E)China MOST 973 Program(2014CB845901)
文摘The 2008 Wenchuan earthquake has a significant impact on the seismicity of nearby regions. The Longnan earthquake which occurred on September 12,2008 in Gansu Province was out of the aftershock zone. Reliable source parameters are essential for understanding the seismogenic process of this earthquake. Therefore,three approaches are adopted to study the source parameters of this event. The focal mechanism is obtained with the g CAP method that takes non-Double-Couple(non-DC)component into account. The two fault planes are NP1:150°/45°/81° and NP2:342°/45°/98°,while the non-DC component is about 53%. The focal depth is 1. 6 km,which indicates the Longnan earthquake is a shallow event. Furthermore,this result is also in good agreement with results obtained with two other approaches:amplitude spectra of Rayleigh wave and surface displacement from In SAR measurement. To analyze the cause of the event,coulomb failure stress change caused by the Wenchuan earthquake on the Longnan earthquake fault plane is calculated. The result shows that coulomb stress change is 30 k Pa around the Longnan earthquake hypocenter,which exceeds the typical triggering threshold of 10 k Pa. The research indicates that the Wenchuan earthquake probably promote the happening of the Longnan earthquake.
基金supported by China Postdoctoral Science Foundation (Grant No. 20070420070)China Postdoctoral Science Foundation Spe-cially Funded Project and National Basic Research Program of China (Grant No. 973-2007CB411807)
文摘A new simple two-scale model on the polarimetric microwave emission of ocean surface is derived at first, which can be ex-pressed as an integral of weighting functions (M0 and M2) and ocean surface curvature spectrum coefficients (C0 and C2). This provides a simple way to investigate the effect of curvature spectrum on ocean emission. It is found that ocean waves with wavelengths both comparable to and much greater than the electromagnetic wavelength can contribute to the harmonics of ocean surface microwave emission, depending on the magnitude of the ocean surface spectrum in these length scales. Bright-ness temperature predictions differ significantly due to present diverse spectrum models, and thus a study on wave spectrum obtained inversely from brightness temperature measurements is necessary. From the ocean surface radiation data measured by polarimetric microwave radiometer, we derived an ocean wave spectrum with a wider wave number range, using the proposed two-scale model and constrained linear least-squares method. The derived ocean wave spectrum is useful for comparing with present diverse models.