In this study, Hydromagnetic Squeezing Nanofluid flow between two vertical plates in presence of a chemical reaction has been investigated. The governing equations were transformed by similarity transformation and the...In this study, Hydromagnetic Squeezing Nanofluid flow between two vertical plates in presence of a chemical reaction has been investigated. The governing equations were transformed by similarity transformation and the resulting ordinary differential equations were solved by collocation method. The velocity, temperature, concentration and magnetic induction profiles were determined with help of various flow parameters. The numerical scheme was simulated with aid of MATLAB. The results showed that increasing the squeeze number only boosts velocity and concentration while lowering temperature. Conversely, increasing the Hartmann number, Reynold’s magnetic number, Eckert number and Thermal Grashof number generally increases temperature but decreases both velocity and concentration. Chemical reaction rate and Soret number solely elevate concentration while Schmidt number only reduces it. The results of this study will be useful in the fields of oil and gas industry, plastic processing industries, filtration, food processing, lubrication system in machinery, Microfluidics devices for drug delivery and other related fields of nanotechnology.展开更多
This paper discusses the amplitude-squared squeezing for the superposition of two coherent states with their phase differences being separately π/2, 3π/2, and π1, as well as for the superposition state of two pseud...This paper discusses the amplitude-squared squeezing for the superposition of two coherent states with their phase differences being separately π/2, 3π/2, and π1, as well as for the superposition state of two pseudoclassical states. According to the analysis, it is found that the superposition state of two coherent states with their phase differences π/2 and 3π/2, and the superposition state of two pseudoclassical states both do exhibit the amplitude-squared squeezing. Also, some specific states are found to exhibit even stronger squeezing effects when relative phase of the superposition is equal to the average photon number. Amplitude-squared squeezing is dependent on the difference in phase between two coherent states.展开更多
We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-s...We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-squared squeezing in a Kerr-nonlinear blackbody is much larger than the corresponding squeezing in normal blackbody, and the degree of amplitude-squared squeezing is much larger than the amplitude squeezing for the same range of parameters in a Kerr-nonlinear blackbody.展开更多
From the viewpoint of quantum information, this paper studies preparation and control of atomic optimal entropy squeezing states (AOESS) for a moving two-level atom under control of the two-mode squeezing vacuum fie...From the viewpoint of quantum information, this paper studies preparation and control of atomic optimal entropy squeezing states (AOESS) for a moving two-level atom under control of the two-mode squeezing vacuum fields. Necessary conditions of preparation of the AOESS are analysed, and numerical verification of the AOESS is finished. It shows that the AOESS can be prepared by controlling the time of the atom interaction with the field, cutting the entanglement between the atom and field, and adjusting squeezing factor of the field. An atomic optimal entropy squeezing sudden generation in different components can alternately be realized by controlling the field-mode structure parameter.展开更多
This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of ent...This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of entanglement between the two-mode fields by using quantum relative entropy.The results obtained from numerical calculation indicate that the squeezed period,the duration of entropy squeezing and the maximal squeezing can be controlled by appropriately choosing the intensity of the light field,the atomic motion and the field-mode structure.The atomic motion leads to the periodic recovery of the initial maximal degree of entanglement between the two-mode fields.Moreover,there exists a corresponding relation between the time evolution properties of the atomic entropy squeezing and those of the entanglement between the two-mode fields.展开更多
The entropy squeezing of a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel is investigated in detail. Our results show that when coupled to the single-mod...The entropy squeezing of a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel is investigated in detail. Our results show that when coupled to the single-mode field, the atom in appropriate initial states can not only generate obvious entropy squeezing but also keep in the optimal squeezing state,while passing through the amplitude damping channel, the atom can generate entropy squeezing under the control of the weak measurement. Besides, it is proved again that as a measurement method for atomic squeezing, the entropy squeezing is precise and effective. Therefore our work is instructive for experiments in preparing three-level system information resource with ultra-low quantum noise.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
Our question delves into the nature of early universe vacuum fields, and if this initial vacuum field corresponds to a configuration of early universe space-time at the start of inflation. The answer as to this came o...Our question delves into the nature of early universe vacuum fields, and if this initial vacuum field corresponds to a configuration of early universe space-time at the start of inflation. The answer as to this came out due to wanting to know if a cosmological constant, as given in the Einstein field equations is commensurate with the byproduct of squeezed states. We compare our answer, with the influx of energy as given by a modified Heinsenberg uncertainty principle, at the start of the inflationary era. The so called influx of energy is tied into the squeezed state phenomena as written up in the onset of this article. The impetus to writing this document came from Dr. Karim, in an e mail which the author relates to, in the introduction. Our claim is that the smallness of is what is driving the existence of the squeezed states.展开更多
Rubber has strong nonlinear viscoelastic characteristic. Under effect of the periodically changing external force,it will show the phenomenon of lagging deformation and mechanical loss,which means deformation lags beh...Rubber has strong nonlinear viscoelastic characteristic. Under effect of the periodically changing external force,it will show the phenomenon of lagging deformation and mechanical loss,which means deformation lags behind stress changes and the situation of loss of work is caused by the hysteresis. Loss of work will be transformed into thermal energy and makes the temperature of rubber and the object in contact with it rise,which will thereby affect the dynamic characteristics of the structure. Based on a pair of mutual rotating and squeezing steel-rubber rollers as the research object,the finite element simulation software Ansys is used in this paper to analyze the temperature field of the structure. As a result,temperature distribution characteristics of two directions are obtained. One is squeezing area along the direction of the wall,the other is along the direction of thickness of rubber. Then the influence of the rotating speed and the pressure between two rollers on temperature of rubber is analyzed. The temperature experiment of mutual squeezing contact steelrubber roller is carried out on the experimental platform via using infrared thermal imager and infrared thermometer. The experiment data are in accordance with the simulation results on regulation of temperature distribution as well as high degree of similarity on value,which shows the effectiveness of simulation. Research results are of great significance for temperature characteristic analysis of rubber structure.展开更多
It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squ...It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squeezed parameter and squeezed limit due to the modulation frequency are investigated. The smaller the modulation frequency is, the stronger the degree of higher-order squeezing becomes. Furthermore, the hlgher-order uncertainty relations in the process of non-degenerate four-wave mixing are presented for the first time. The product of higher-order noise moments is related to even order number N and the length L of the medium.展开更多
The entropy squeezing properties of different types of moving three-level atoms coupled with a single-mode coherent field are studied. The influences of the moving velocity and initial states of the three-level atom o...The entropy squeezing properties of different types of moving three-level atoms coupled with a single-mode coherent field are studied. The influences of the moving velocity and initial states of the three-level atom on the entropy squeezing are discussed. The results show that, the entropy squeezing properties of the three-level atom depend on its initial state, moving velocity, and the type. A stationary three-level atom can not obtain a steady entropy squeezing whatever initial conditions are chosen, while a moving three-level atom can achieve a steady and optimal entropy squeezing through choosing higher velocity and appropriate initial state. Our result provides a simple method for preparing squeezing resources with ultra-low quantum noise of the three-level atomic system without additional any complex techniques.展开更多
We investigate spin squeezing effects of trapped ions in an off-resonance optical potential system using the arbitrary range spin spin interaction and transverse field model. The collective spin noises at any time are...We investigate spin squeezing effects of trapped ions in an off-resonance optical potential system using the arbitrary range spin spin interaction and transverse field model. The collective spin noises at any time are analyzed exactly. The general expression of spin squeezing factor is presented for arbitrary-range spin interaction. For the nearest-neighbor and next-nearest neighbor spin interaction model, the analytic solutions are reduced from the general expressions. It is shown that the maximum spin squeezing is enhanced for the general arbitrary-range spin interaction compared with the nearest-neighbor interaction model as the long-range interaction with arbitrary sites enforces stronger correlation.展开更多
We propose a new two-mode thermo-and squeezing-mixed optical field, described by the new density operator ρ=1-e^f-|g|^2 e^ga^+b^+e^fa^+a|0〉 f_(bb) 〈0| e^(g*ab), where |0〉_(bb) 〈0| is the b-mode va...We propose a new two-mode thermo-and squeezing-mixed optical field, described by the new density operator ρ=1-e^f-|g|^2 e^ga^+b^+e^fa^+a|0〉 f_(bb) 〈0| e^(g*ab), where |0〉_(bb) 〈0| is the b-mode vacuum, e ^fa^+arepresents the thermo-field, and e^ga^+b^+ indicates squeezing. The photon statistics for ρ is studied by virtue of the method of integration within ordered product(IWOP) of operators. Such a field can be generated when a two-mode squeezed state passes through a one-mode dissipation channel.展开更多
We investigate how an optical squeezed chaotic field(SCF) evolves in an amplitude dissipation channel. We have used the integration within ordered product of operators technique to derive its evolution law. We also ...We investigate how an optical squeezed chaotic field(SCF) evolves in an amplitude dissipation channel. We have used the integration within ordered product of operators technique to derive its evolution law. We also show that the density operator of SCF can be viewed as a generating field of the squeezed number state.展开更多
Present numerical study examines the heat and mass transfer characteristics of magneto-hydrodynamic Casson fluid flow between two parallel plates under the influence of thermal radiation,internal heat generation or ab...Present numerical study examines the heat and mass transfer characteristics of magneto-hydrodynamic Casson fluid flow between two parallel plates under the influence of thermal radiation,internal heat generation or absorption and Joule dissipation effects with homogeneous first order chemical reaction.The non-Newtonian behaviour of Casson fluid is distinguished from those of Newtonian fluids by considering the well-established rheological Casson fluid flow model.The governing partial differential equations for the unsteady two-dimensional squeezing flow with heat and mass transfer of a Casson fluid are highly nonlinear and coupled in nature.The nonlinear ordinary differential equations governing the squeezing flow are obtained by imposing the similarity transformations on the conservation laws.The resulting equations have been solved by using two numerical techniques,namely Runge-Kutta fourth order integration scheme with shooting technique and bvp4c Matlab solver.The comparison between both the techniques is provided.Further,for the different set physical parameters,the numerical results are obtained and presented in the form of graphs and tables.However,in view of industrial use,the power required to generate the movement of the parallel plates is considerably reduced for the negative values of squeezing number.From the present investigation it is noticed that,due to the presence of stronger Lorentz forces,the temperature and velocity fields eventually suppressed for the enhancing values of Hartmann number.Also,higher values of squeezing number diminish the squeezing force on the fluid flow which in turn reduces the thermal field.Further,the destructive nature of the chemical reaction magnifies the concentration field;whereas constructive chemical reaction decreases the concentration field.The present numerical solutions are compared with previously published results and show the good agreement.展开更多
In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linew...In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linewidth of the harmonic field is either much narrower or broader than the subharmonic field. Since an electromagnetically-induced-transparency (EIT)-like effect can be simulated in a triple-resonant OPA, the output spectra from a triple-resonant OPA with a squeezed vacuum input may simulate the phenomenon of the response of an EIT medium for squeezed states. This scheme can be implemented with present experimental setups.展开更多
We examine the single-atom entropy squeezing and the atom-field entanglement in a system of two moving twolevel atoms interacting with a single-mode coherent field in a lossless resonant cavity. Our numerical calculat...We examine the single-atom entropy squeezing and the atom-field entanglement in a system of two moving twolevel atoms interacting with a single-mode coherent field in a lossless resonant cavity. Our numerical calculations indicate that the squeezing period, the squeezing time and the maximM squeezing can be controlled by appropriately choosing the atomic motion and the field-mode structure. The atomic motion leads to a periodical time evolution of entanglement between the two-atom and the field. Moreover, there exists corresponding relation between the time evolution properties of the atomic entropy squeezing and that of the entanglement between the two atoms and the field.展开更多
The quantum dynamics of a charge qubit, which makes up of a single-Cooper-pair box, are explored. The Cooper-pair box is irradiated by a squeezed field in an ideal one-mode cavity. By the result of the Schrodinger equ...The quantum dynamics of a charge qubit, which makes up of a single-Cooper-pair box, are explored. The Cooper-pair box is irradiated by a squeezed field in an ideal one-mode cavity. By the result of the Schrodinger equation, the Cooper pairs number 〈N〉 is conveniently obtained. Then it is proved that the oscillations of the Cooper-pair number 〈N〉 are decreasing with the increasing squeezing parameter of the squeezed field.展开更多
The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our ...The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our attention on the discussion of the influences of field squeezing parameter γ, atomic distribution angle θ and coupling strength g between the field and the atom on the properties of the evolution of field quantum entropy. The results obtained from numerical calculation indicate that the amplitude of oscillation of field quantum entropy evolution decreases with the increasing of squeezing parameter γ, and that both atomic distribution angle θ and coupling strength g between the field and the atom can influence the periodicity of field quantum entropy evolution.展开更多
In this paper, we have presented the numerical investigation of the geometric phase and field entropy squeezing for a two-level system interacting with coherent field under decoherence effect during the time evolution...In this paper, we have presented the numerical investigation of the geometric phase and field entropy squeezing for a two-level system interacting with coherent field under decoherence effect during the time evolution. The effects of the initial state setting and atomic dissipation damping parameter on the evolution of the geometric phase and entropy squeezing have been examined. We have reported some new results related to the periodicity and regularity of geometric phase and entropy squeezing.展开更多
文摘In this study, Hydromagnetic Squeezing Nanofluid flow between two vertical plates in presence of a chemical reaction has been investigated. The governing equations were transformed by similarity transformation and the resulting ordinary differential equations were solved by collocation method. The velocity, temperature, concentration and magnetic induction profiles were determined with help of various flow parameters. The numerical scheme was simulated with aid of MATLAB. The results showed that increasing the squeeze number only boosts velocity and concentration while lowering temperature. Conversely, increasing the Hartmann number, Reynold’s magnetic number, Eckert number and Thermal Grashof number generally increases temperature but decreases both velocity and concentration. Chemical reaction rate and Soret number solely elevate concentration while Schmidt number only reduces it. The results of this study will be useful in the fields of oil and gas industry, plastic processing industries, filtration, food processing, lubrication system in machinery, Microfluidics devices for drug delivery and other related fields of nanotechnology.
基金supported by the National Natural Science Foundation of China (Grant Nos 10674038 and 10604042)National Basic Research Program of China (Grant No 2006CB302901)
文摘This paper discusses the amplitude-squared squeezing for the superposition of two coherent states with their phase differences being separately π/2, 3π/2, and π1, as well as for the superposition state of two pseudoclassical states. According to the analysis, it is found that the superposition state of two coherent states with their phase differences π/2 and 3π/2, and the superposition state of two pseudoclassical states both do exhibit the amplitude-squared squeezing. Also, some specific states are found to exhibit even stronger squeezing effects when relative phase of the superposition is equal to the average photon number. Amplitude-squared squeezing is dependent on the difference in phase between two coherent states.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10174024 and 10474025
文摘We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-squared squeezing in a Kerr-nonlinear blackbody is much larger than the corresponding squeezing in normal blackbody, and the degree of amplitude-squared squeezing is much larger than the amplitude squeezing for the same range of parameters in a Kerr-nonlinear blackbody.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19874020)the Natural Science Foundation of Hunan Province of China (Grant Nos. 09JJ3012 and 10JJ9002)the Research Foundation of Education Bureau of Hunan Province of China (Grant No. 10A032)
文摘From the viewpoint of quantum information, this paper studies preparation and control of atomic optimal entropy squeezing states (AOESS) for a moving two-level atom under control of the two-mode squeezing vacuum fields. Necessary conditions of preparation of the AOESS are analysed, and numerical verification of the AOESS is finished. It shows that the AOESS can be prepared by controlling the time of the atom interaction with the field, cutting the entanglement between the atom and field, and adjusting squeezing factor of the field. An atomic optimal entropy squeezing sudden generation in different components can alternately be realized by controlling the field-mode structure parameter.
基金Project supported by the Scientific and Technological Program Foundation of Dezhou,Shandong Province of China (Grant No20080153)the Scientific Research Fund of Dezhou University of China (Grant No 07024)
文摘This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of entanglement between the two-mode fields by using quantum relative entropy.The results obtained from numerical calculation indicate that the squeezed period,the duration of entropy squeezing and the maximal squeezing can be controlled by appropriately choosing the intensity of the light field,the atomic motion and the field-mode structure.The atomic motion leads to the periodic recovery of the initial maximal degree of entanglement between the two-mode fields.Moreover,there exists a corresponding relation between the time evolution properties of the atomic entropy squeezing and those of the entanglement between the two-mode fields.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12064012 and 11374096)。
文摘The entropy squeezing of a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel is investigated in detail. Our results show that when coupled to the single-mode field, the atom in appropriate initial states can not only generate obvious entropy squeezing but also keep in the optimal squeezing state,while passing through the amplitude damping channel, the atom can generate entropy squeezing under the control of the weak measurement. Besides, it is proved again that as a measurement method for atomic squeezing, the entropy squeezing is precise and effective. Therefore our work is instructive for experiments in preparing three-level system information resource with ultra-low quantum noise.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
文摘Our question delves into the nature of early universe vacuum fields, and if this initial vacuum field corresponds to a configuration of early universe space-time at the start of inflation. The answer as to this came out due to wanting to know if a cosmological constant, as given in the Einstein field equations is commensurate with the byproduct of squeezed states. We compare our answer, with the influx of energy as given by a modified Heinsenberg uncertainty principle, at the start of the inflationary era. The so called influx of energy is tied into the squeezed state phenomena as written up in the onset of this article. The impetus to writing this document came from Dr. Karim, in an e mail which the author relates to, in the introduction. Our claim is that the smallness of is what is driving the existence of the squeezed states.
基金Supported by the National Natural Science Foundation of China(No.51675010)Science Technology Project of Beijing Municipal Education Commission(KM201710005015)
文摘Rubber has strong nonlinear viscoelastic characteristic. Under effect of the periodically changing external force,it will show the phenomenon of lagging deformation and mechanical loss,which means deformation lags behind stress changes and the situation of loss of work is caused by the hysteresis. Loss of work will be transformed into thermal energy and makes the temperature of rubber and the object in contact with it rise,which will thereby affect the dynamic characteristics of the structure. Based on a pair of mutual rotating and squeezing steel-rubber rollers as the research object,the finite element simulation software Ansys is used in this paper to analyze the temperature field of the structure. As a result,temperature distribution characteristics of two directions are obtained. One is squeezing area along the direction of the wall,the other is along the direction of thickness of rubber. Then the influence of the rotating speed and the pressure between two rollers on temperature of rubber is analyzed. The temperature experiment of mutual squeezing contact steelrubber roller is carried out on the experimental platform via using infrared thermal imager and infrared thermometer. The experiment data are in accordance with the simulation results on regulation of temperature distribution as well as high degree of similarity on value,which shows the effectiveness of simulation. Research results are of great significance for temperature characteristic analysis of rubber structure.
文摘It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squeezed parameter and squeezed limit due to the modulation frequency are investigated. The smaller the modulation frequency is, the stronger the degree of higher-order squeezing becomes. Furthermore, the hlgher-order uncertainty relations in the process of non-degenerate four-wave mixing are presented for the first time. The product of higher-order noise moments is related to even order number N and the length L of the medium.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12064012 and 11374096)。
文摘The entropy squeezing properties of different types of moving three-level atoms coupled with a single-mode coherent field are studied. The influences of the moving velocity and initial states of the three-level atom on the entropy squeezing are discussed. The results show that, the entropy squeezing properties of the three-level atom depend on its initial state, moving velocity, and the type. A stationary three-level atom can not obtain a steady entropy squeezing whatever initial conditions are chosen, while a moving three-level atom can achieve a steady and optimal entropy squeezing through choosing higher velocity and appropriate initial state. Our result provides a simple method for preparing squeezing resources with ultra-low quantum noise of the three-level atomic system without additional any complex techniques.
基金Supported by the National Natural Science Foundation of China under Grant No 51427801
文摘We investigate spin squeezing effects of trapped ions in an off-resonance optical potential system using the arbitrary range spin spin interaction and transverse field model. The collective spin noises at any time are analyzed exactly. The general expression of spin squeezing factor is presented for arbitrary-range spin interaction. For the nearest-neighbor and next-nearest neighbor spin interaction model, the analytic solutions are reduced from the general expressions. It is shown that the maximum spin squeezing is enhanced for the general arbitrary-range spin interaction compared with the nearest-neighbor interaction model as the long-range interaction with arbitrary sites enforces stronger correlation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574295)the Natural Science Foundation of Anhui Province,China(Grant No.1408085QA13)the Key project of Anhui Provincial Department of Education,China(Grant No.KJ2017A406)
文摘We propose a new two-mode thermo-and squeezing-mixed optical field, described by the new density operator ρ=1-e^f-|g|^2 e^ga^+b^+e^fa^+a|0〉 f_(bb) 〈0| e^(g*ab), where |0〉_(bb) 〈0| is the b-mode vacuum, e ^fa^+arepresents the thermo-field, and e^ga^+b^+ indicates squeezing. The photon statistics for ρ is studied by virtue of the method of integration within ordered product(IWOP) of operators. Such a field can be generated when a two-mode squeezed state passes through a one-mode dissipation channel.
基金Project supported by the National Natural Science Foundation of China(Grant No.10574647)the Natural Science Foundation of Shandong Province,China(Grant No.Y2008A16)the University Experimental Technology Foundation of Shandong Province of China(Grant No.S04W138)
文摘We investigate how an optical squeezed chaotic field(SCF) evolves in an amplitude dissipation channel. We have used the integration within ordered product of operators technique to derive its evolution law. We also show that the density operator of SCF can be viewed as a generating field of the squeezed number state.
文摘Present numerical study examines the heat and mass transfer characteristics of magneto-hydrodynamic Casson fluid flow between two parallel plates under the influence of thermal radiation,internal heat generation or absorption and Joule dissipation effects with homogeneous first order chemical reaction.The non-Newtonian behaviour of Casson fluid is distinguished from those of Newtonian fluids by considering the well-established rheological Casson fluid flow model.The governing partial differential equations for the unsteady two-dimensional squeezing flow with heat and mass transfer of a Casson fluid are highly nonlinear and coupled in nature.The nonlinear ordinary differential equations governing the squeezing flow are obtained by imposing the similarity transformations on the conservation laws.The resulting equations have been solved by using two numerical techniques,namely Runge-Kutta fourth order integration scheme with shooting technique and bvp4c Matlab solver.The comparison between both the techniques is provided.Further,for the different set physical parameters,the numerical results are obtained and presented in the form of graphs and tables.However,in view of industrial use,the power required to generate the movement of the parallel plates is considerably reduced for the negative values of squeezing number.From the present investigation it is noticed that,due to the presence of stronger Lorentz forces,the temperature and velocity fields eventually suppressed for the enhancing values of Hartmann number.Also,higher values of squeezing number diminish the squeezing force on the fluid flow which in turn reduces the thermal field.Further,the destructive nature of the chemical reaction magnifies the concentration field;whereas constructive chemical reaction decreases the concentration field.The present numerical solutions are compared with previously published results and show the good agreement.
基金supported by the National Basic Research Program of China (Grant No. 2011CB921601)the National Natural Science Foundation of China for Excellent Research Team (Grant No. 61121064)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401130001)the Graduate Outstanding Innovation Item of Shanxi Province, China (Grant No. 20113001)
文摘In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linewidth of the harmonic field is either much narrower or broader than the subharmonic field. Since an electromagnetically-induced-transparency (EIT)-like effect can be simulated in a triple-resonant OPA, the output spectra from a triple-resonant OPA with a squeezed vacuum input may simulate the phenomenon of the response of an EIT medium for squeezed states. This scheme can be implemented with present experimental setups.
基金supported by the Science and Technology Program of Dezhou,Shandong Province,China (Grant No. 20080153)the Scientific Research Fund of Dezhou University,China (Grant No. 07024)
文摘We examine the single-atom entropy squeezing and the atom-field entanglement in a system of two moving twolevel atoms interacting with a single-mode coherent field in a lossless resonant cavity. Our numerical calculations indicate that the squeezing period, the squeezing time and the maximM squeezing can be controlled by appropriately choosing the atomic motion and the field-mode structure. The atomic motion leads to a periodical time evolution of entanglement between the two-atom and the field. Moreover, there exists corresponding relation between the time evolution properties of the atomic entropy squeezing and that of the entanglement between the two atoms and the field.
文摘The quantum dynamics of a charge qubit, which makes up of a single-Cooper-pair box, are explored. The Cooper-pair box is irradiated by a squeezed field in an ideal one-mode cavity. By the result of the Schrodinger equation, the Cooper pairs number 〈N〉 is conveniently obtained. Then it is proved that the oscillations of the Cooper-pair number 〈N〉 are decreasing with the increasing squeezing parameter of the squeezed field.
基金Project supported by the Natural Science Foundation of Shaanxi Province (Grant No 2001SL04), the Scientific and Technological Key Program Foundation of Shaanxi Province (Grant No 2002K05-G9).
文摘The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our attention on the discussion of the influences of field squeezing parameter γ, atomic distribution angle θ and coupling strength g between the field and the atom on the properties of the evolution of field quantum entropy. The results obtained from numerical calculation indicate that the amplitude of oscillation of field quantum entropy evolution decreases with the increasing of squeezing parameter γ, and that both atomic distribution angle θ and coupling strength g between the field and the atom can influence the periodicity of field quantum entropy evolution.
文摘In this paper, we have presented the numerical investigation of the geometric phase and field entropy squeezing for a two-level system interacting with coherent field under decoherence effect during the time evolution. The effects of the initial state setting and atomic dissipation damping parameter on the evolution of the geometric phase and entropy squeezing have been examined. We have reported some new results related to the periodicity and regularity of geometric phase and entropy squeezing.