AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHO...AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHODS:Twenty HR patients and 20 healthy controls(HCs)were respectively recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the fALFF method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Further,we used Pearson’s correlation analysis to explore the relationship between fALFF values in specific brain regions and clinical behaviors in patients with HR.RESULTS:The brain areas of the HR group with lower fALFF values than HCs were the right orbital part of the middle frontal gyrus(RO-MFG)and right lingual gyrus.In contrast,the values of fALFFs in the left middle temporal gyrus(MTG),left superior temporal pole(STP),left middle frontal gyrus(MFG),left superior marginal gyrus(SMG),left superior parietal lobule(SPL),and right supplementary motor area(SMA)were higher in the HR group.The results of a t-test showed that the average values of fALFFs were statistically significantly different in the HR group and HC group(P<0.001).The fALFF values of the left middle frontal gyrus in HR patients were positively correlated with anxiety scores(r=0.9232;P<0.0001)and depression scores(r=0.9682;P<0.0001).CONCLUSION:fALFF values in multiple brain regions of HR patients are abnormal,suggesting that these brain regions in HR patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of HR.展开更多
BACKGROUND Diabetes mellitus is a metabolic disorder characterized by prolonged elevation of blood glucose due to various causes.Currently,the relationship between diabetic retinopathy(DR)and altered connectivity of b...BACKGROUND Diabetes mellitus is a metabolic disorder characterized by prolonged elevation of blood glucose due to various causes.Currently,the relationship between diabetic retinopathy(DR)and altered connectivity of brain function is unclear.AIM To investigate the relationship between this brain activity and clinical manifestations and behaviors of DR patients by using the amplitude of low-frequency fluctuation(ALFF)technique.METHODS Twenty-four DR patients and 24 healthy controls(HCs)matched for age and gender were enrolled.We measured and recorded average ALFF values of DR patients and HCs and then classified them using receiver operating characteristic(ROC)curves.RESULTS ALFF values of both left and right posterior cerebellar lobe and right anterior cingulate gyrus were remarkably higher in the DR patients than in the HCs;however,DR patients had lower values in the bilateral calcarine area.ROC curve analysis of different brain regions demonstrated high accuracy in the area under the curve analysis.There was no significant relationship between mean ALFF values for different regions and clinical presentations in DR patients.Neuronal synchronization abnormalities in some brain regions of DR patients were associated with cognitive and visual disorders.CONCLUSION Abnormal spontaneous brain activity was observed in many areas of DR patients’brains,which may suggest a possible link between clinical manifestations and behaviors in DR patients.展开更多
AIM:To assess changed spontaneous brain activity in hyperthyroid exophthalmos(HE)patients by the amplitude of the low-frequency fluctuation(ALFF)method,and to analyze the correlation between brain activity and ALFF va...AIM:To assess changed spontaneous brain activity in hyperthyroid exophthalmos(HE)patients by the amplitude of the low-frequency fluctuation(ALFF)method,and to analyze the correlation between brain activity and ALFF values in these patients.METHODS:Totally 18 HE and 18 hyperthyroid nonexophthalmos(HNE)patients were enrolled.The participants were tested by resting-state functional magnetic resonance imaging,and receiver operating characteristic(ROC)curves were generated to classify the ALFF values of the study population.Pearson’s correlation analysis was utilized to evaluate the relationship between the ALFF values obtained from different brain areas and clinical manifestations.RESULTS:Contrary to HNE patients,we observed lower ALFF values in the left calcarine fissure and surrounding cortex(LCFSC)in HE patients.In the ROC curve analysis of the LCFSC,the area under the curve reflected a high degree of accuracy.In addition,there was positive correlation between mean ALFF values of the LCFSC and the bestcorrected visual acuity of the affected eyes.CONCLUSION:The study displays abnormal brain activity in LCFSC in patients with HE,which might suggest pathological mechanism of visual impairment of HE patients.展开更多
BACKGROUND Major depressive disorder(MDD)tends to have a high incidence and high suicide risk.Electroconvulsive therapy(ECT)is currently a relatively effective treatment for MDD.However,the mechanism of efficacy of EC...BACKGROUND Major depressive disorder(MDD)tends to have a high incidence and high suicide risk.Electroconvulsive therapy(ECT)is currently a relatively effective treatment for MDD.However,the mechanism of efficacy of ECT is still unclear.AIM To investigate the changes in the amplitude of low-frequency fluctuations in specific frequency bands in patients with MDD after ECT.METHODS Twenty-two MDD patients and fifteen healthy controls(HCs)were recruited to this study.MDD patients received 8 ECT sessions with bitemporal placement.Resting-state functional magnetic resonance imaging was adopted to examine regional cerebellar blood flow in both the MDD patients and HCs.The MDD patients were scanned twice(before the first ECT session and after the eighth ECT session)to acquire data.Then,the amplitude of low-frequency fluctuations(ALFF)was computed to characterize the intrinsic neural oscillations in different bands(typical frequency,slow-5,and slow-4 bands).RESULTS Compared to before ECT(pre-ECT),we found that MDD patients after the eighth ECT(post-ECT)session had a higher ALFF in the typical band in the right middle frontal gyrus,posterior cingulate,right supramarginal gyrus,left superior frontal gyrus,and left angular gyrus.There was a lower ALFF in the right superior temporal gyrus.Compared to pre-ECT values,the ALFF in the slow-5 band was significantly increased in the right limbic lobe,cerebellum posterior lobe,right middle orbitofrontal gyrus,and frontal lobe in post-ECT patients,whereas the ALFF in the slow-5 band in the left sublobar region,right angular gyrus,and right frontal lobe was lower.In contrast,significantly higher ALFF in the slow-4 band was observed in the frontal lobe,superior frontal gyrus,parietal lobe,right inferior parietal lobule,and left angular gyrus.CONCLUSION Our results suggest that the abnormal ALFF in pre-and post-ECT MDD patients may be associated with specific frequency bands.展开更多
Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019(COVID-19)exhibit anxiety,depression,and altered brain microstructure,their long-term physical problems,ne...Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019(COVID-19)exhibit anxiety,depression,and altered brain microstructure,their long-term physical problems,neuropsychiatric sequelae,and changes in brain function remain unknown.This observational cohort study collected 1-year follow-up data from 22 patients who had been hospitalized with COVID-19(8 males and 11 females,aged 54.2±8.7 years).Fatigue and myalgia were persistent symptoms at the 1-year follow-up.The resting state functional magnetic resonance imaging revealed that compared with 29 healthy controls(7 males and 18 females,aged 50.5±11.6 years),COVID-19 survivors had greatly increased amplitude of low-frequency fluctuation(ALFF)values in the left precentral gyrus,middle frontal gyrus,inferior frontal gyrus of operculum,inferior frontal gyrus of triangle,insula,hippocampus,parahippocampal gyrus,fusiform gyrus,postcentral gyrus,inferior parietal angular gyrus,supramarginal gyrus,angular gyrus,thalamus,middle temporal gyrus,inferior temporal gyrus,caudate,and putamen.ALFF values in the left caudate of the COVID-19 survivors were positively correlated with their Athens Insomnia Scale scores,and those in the left precentral gyrus were positively correlated with neutrophil count during hospitalization.The long-term follow-up results suggest that the ALFF in brain regions related to mood and sleep regulation were altered in COVID-19 survivors.This can help us understand the neurobiological mechanisms of COVID-19-related neuropsychiatric sequelae.This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University(approval No.2020 S004)on March 19,2020.展开更多
We used resting-state functional magnetic resonance imaging(fMRI)to determine whether there are any abnormalities in different frequency bands between amplitude of low-frequency fluctuations(ALFF)and fractional ALFF(f...We used resting-state functional magnetic resonance imaging(fMRI)to determine whether there are any abnormalities in different frequency bands between amplitude of low-frequency fluctuations(ALFF)and fractional ALFF(fALFF)and between 10 early amnestic mild cognitive impairment(EMCI)patients and eight normal controls participating in the Alzheimer’s Disease Neuroimaging Initiative(ADNI).We showed widespread difference in ALFF/fALFF between two frequency bands(slow-4:0.027-0.073 Hz,slow-5:0.01-0.027 Hz)in many brain areas including posterior cingulate cortex(PCC),medial prefrontal cortex(MPFC),suprasellar cistern(SC)and ambient cistern(AC).Compared to the normal controls,the EMCI patients showed increased ALFF values in PCu,cerebellum,occipital lobe and cerebellum posterior lobe in frequency band slow-4.While in frequency band slow-5,the EMCI patients showed decreased ALFF values in temporal lobe,left cerebrum and middle temporal gyrus5.Moreover,the EMCI patients showed increased fALFF values in frontal lobe and inferior frontal gyrus in band slow-5.While in frequency band slow-4,the EMCI patients showed decreased fALFF values in limbic lobe,cingulate gyrus and corpus callosum.These results demonstrated that EMCI patients had widespread abnormalities of amplitude of LFF in different frequency bands.展开更多
Background:The pathogenesis of neck pain in the brain,which is the fourth most common cause of disability,remains unclear.Furthermore,little is known about the characteristics of dynamic local functional brain activit...Background:The pathogenesis of neck pain in the brain,which is the fourth most common cause of disability,remains unclear.Furthermore,little is known about the characteristics of dynamic local functional brain activity in cervical pain.Objective:The present study aimed to investigate the changes of local brain activity caused by chronic neck pain and the factors leading to neck pain.Methods:Using the amplitude of low-frequency fluctuations(ALFF)method combined with sliding window approach,we compared local brain activity that was measured by the functional magnetic resonance imaging(fMRI)of 107 patients with chronic neck pain(CNP)with that of 57 healthy control participants.Five pathogenic factors were selected for correlation analysis.Results:The group comparison results of dynamic amplitude of low-frequency fluctuation(dALFF)variability showed that patients with CNP exhibited decreased dALFF variability in the left inferior temporal gyrus,the middle temporal gyrus,the angular gyrus,the inferior parietal marginal angular gyrus,and the middle occipital gyrus.The abnormal dALFF variability of the left inferior temporal gyrus was negatively correlated with the average daily working hours of patients with neck pain.Conclusions:The findings indicated that the brain regions of patients with CNP responsible for audition,vision,memory,and emotion were subjected to temporal variability of abnormal regional brain activity.Moreover,the dALFF variability in the left inferior temporal gyrus might be a risk factor for neck pain.This study revealed the brain dysfunction of patients with CNP from the perspective of dynamic local brain activity,and highlighted the important role of dALFF variability in understanding the neural mechanism of CNP.展开更多
Objective Behavioral studies have suggested a low-frequency(0.05 Hz) fluctuation of sustained attention on the basis of the intra-individual variability of reaction-time.Conventional task designs for functional magn...Objective Behavioral studies have suggested a low-frequency(0.05 Hz) fluctuation of sustained attention on the basis of the intra-individual variability of reaction-time.Conventional task designs for functional magnetic resonance imaging(fMRI) studies are not appropriate for frequency analysis.The present study aimed to propose a new paradigm,real-time finger force feedback(RT-FFF),to study the brain mechanisms of sustained attention and neurofeedback.Methods We compared the low-frequency fluctuations in both behavioral and fMRI data from 38 healthy adults(19 males;mean age,22.3 years).Two fMRI sessions,in RT-FFF and sham finger force feedback(S-FFF) states,were acquired(TR 2 s,Siemens Trio 3-Tesla scanner,8 min each,counter-balanced).Behavioral data of finger force were obtained simultaneously at a sampling rate of 250 Hz.Results Frequency analysis of the behavioral data showed lower amplitude in the lowfrequency band(0.004-0.104 Hz) but higher amplitude in the high-frequency band(27.02-125 Hz) in the RT-FFF than the S-FFF states.The mean finger force was not significantly different between the two states.fMRI data analysis showed higher fractional amplitude of low-frequency fluctuation(fALFF) in the S-FFF than in the RT-FFF state in the visual cortex,but higher fALFF in RT-FFF than S-FFF in the middle frontal gyrus,the superior frontal gyrus,and the default mode network.Conclusion The behavioral results suggest that the proposed paradigm may provide a new approach to studies of sustained attention.The fMRI results suggest that a distributed network including visual,motor,attentional,and default mode networks may be involved in sustained attention and/or real-time feedback.This paradigm may be helpful for future studies on deficits of attention,such as attention deficit hyperactivity disorder and mild traumatic brain injury.展开更多
Regional homogeneity(ReHo)and the amplitude of low-frequency fluctuation(ALFF)are two approaches to depicting different regional characteristics of resting-state functional magnetic resonance imaging(RS-fMRI)dat...Regional homogeneity(ReHo)and the amplitude of low-frequency fluctuation(ALFF)are two approaches to depicting different regional characteristics of resting-state functional magnetic resonance imaging(RS-fMRI)data.Whether they can complementarily reveal brain regional functional abnormalities in attention-deficit/hyperactivity disorder(ADHD)remains unknown.In this study,we applied ReHo and ALFF to 23 medication-na ve boys diagnosed with ADHD and 25 age-matched healthy male controls using whole-brain voxel-wise analysis.Correlation analyses were conducted in the ADHD group to investigate the relationship between the regional spontaneous brain activity measured by the two approaches and the clinical symptoms of ADHD.We found that the ReHo method showed widely-distributed differences between the two groups in the fronto-cingulo-occipitocerebellar circuitry,while the ALFF method showed a difference only in the right occipital area.When a larger smoothing kernel and a more lenient threshold were used for ALFF,more overlapped regions were found between ALFF and ReHo,and ALFF even found some new regions with group differences.The ADHD symptom scores were correlated with the ReHo values in the right cerebellum,dorsal anterior cingulate cortex and left lingual gyrus in the ADHD group,while no correlation was detected between ALFF and ADHD symptoms.In conclusion,ReHo may be more sensitive to regional abnormalities,at least in boys with ADHD,than ALFF.And ALFF may be complementary to ReHo in measuring local spontaneous activity.Combination of the two may yield a more comprehensive pathophy-siological framework for ADHD.展开更多
BACKGROUND Major depression disorder(MDD)constitutes a significant mental health concern.Epidemiological surveys indicate that the lifetime prevalence of depression in adolescents is much higher than that in adults,wi...BACKGROUND Major depression disorder(MDD)constitutes a significant mental health concern.Epidemiological surveys indicate that the lifetime prevalence of depression in adolescents is much higher than that in adults,with a corresponding increased risk of suicide.In studying brain dysfunction associated with MDD in adolescents,research on brain white matter(WM)is sparse.Some researchers even mistakenly regard the signals generated by the WM as noise points.In fact,studies have shown that WM exhibits similar blood oxygen level-dependent signal fluctuations.The alterations in WM signals and their relationship with disease severity in adolescents with MDD remain unclear.AIM To explore potential abnormalities in WM functional signals in adolescents with MDD.METHODS This study involved 48 adolescent patients with MDD and 31 healthy controls(HC).All participants were assessed using the Patient Health Questionnaire-9 Scale and the mini international neuropsychiatric interview(MINI)suicide inventory.In addition,a Siemens Skyra 3.0T magnetic resonance scanner was used to obtain the subjects'image data.The DPABI software was utilized to calculate the WM signal of the fractional amplitude of low frequency fluctuations(fALFF)and regional homogeneity,followed by a two-sample t-test between the MDD and HC groups.Independent component analysis(ICA)was also used to evaluate the WM functional signal.Pearson’s correlation was performed to assess the relationship between statistical test results and clinical scales.RESULTS Compared to HC,individuals with MDD demonstrated a decrease in the fALFF of WM in the corpus callosum body,left posterior limb of the internal capsule,right superior corona radiata,and bilateral posterior corona radiata[P<0.001,family-wise error(FWE)voxel correction].The regional homogeneity of WM increased in the right posterior limb of internal capsule and left superior corona radiata,and decreased in the left superior longitudinal fasciculus(P<0.001,FWE voxel correction).The ICA results of WM overlapped with those of regional homogeneity.The fALFF of WM signal in the left posterior limb of the internal capsule was negatively correlated with the MINI suicide scale(P=0.026,r=-0.32),and the right posterior corona radiata was also negatively correlated with the MINI suicide scale(P=0.047,r=-0.288).CONCLUSION Adolescents with MDD involves changes in WM functional signals,and these differences in brain regions may increase the risk of suicide.展开更多
目的建立基于静息态功能磁共振(functional magnetic resonance imaging,fMRI)低频振幅(amplitude of low-frequency fluctuation,ALFF)数据预测早期精神分裂症(schizophrenia,SZ)患者视觉信息处理速度(visual information processing s...目的建立基于静息态功能磁共振(functional magnetic resonance imaging,fMRI)低频振幅(amplitude of low-frequency fluctuation,ALFF)数据预测早期精神分裂症(schizophrenia,SZ)患者视觉信息处理速度(visual information processing speed,VIPS)的模型。方法纳入31例早期SZ患者和33名正常对照者,用连线测验(trail making test,TMT)评估受试者VIPS,使用支持向量回归(support vector regression,SVR)以两组ALFF差异脑区作为模板定量预测患者组VIPS评分。结果两组的VIPS差异存在统计学意义(P<0.01)。与对照组相比,患者组ALFF值升高主要分布在边缘叶(P<0.01,AlphaSim校正),而ALFF值降低主要分布在额叶、顶叶和枕叶(P<0.01,AlphaSim校正)。SVR结果显示,SZ异常脑区ALFF值可有效预测VIPS(r=0.62,P=0.04)。SVR过程中权重高的脑区包括右侧楔前叶、右侧辅助运动区和右侧中央后回,其中,右侧楔前叶ALFF值与VIPS相关(r=0.50,P<0.01)。结论早期SZ患者部分异常脑区自发活动与VIPS相关且可有效预测VIPS,这提示脑区自发活动可能是SZ患者VIPS受损的预测指标和客观生物标志物。展开更多
基金Supported by National Natural Science Foundation of China(No.82160195)Jiangxi Double-Thousand Plan High-Level Talent Project of Science and Technology Innovation(No.jxsq2023201036)+2 种基金Key R&D Program of Jiangxi Province(No.20223BBH80014)Science and Technology Project of Jiangxi Province Health Commission of Traditional Chinese Medicine(No.2022B258)Science and Technology Project of Jiangxi Health Commission(No.202210017).
文摘AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHODS:Twenty HR patients and 20 healthy controls(HCs)were respectively recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the fALFF method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Further,we used Pearson’s correlation analysis to explore the relationship between fALFF values in specific brain regions and clinical behaviors in patients with HR.RESULTS:The brain areas of the HR group with lower fALFF values than HCs were the right orbital part of the middle frontal gyrus(RO-MFG)and right lingual gyrus.In contrast,the values of fALFFs in the left middle temporal gyrus(MTG),left superior temporal pole(STP),left middle frontal gyrus(MFG),left superior marginal gyrus(SMG),left superior parietal lobule(SPL),and right supplementary motor area(SMA)were higher in the HR group.The results of a t-test showed that the average values of fALFFs were statistically significantly different in the HR group and HC group(P<0.001).The fALFF values of the left middle frontal gyrus in HR patients were positively correlated with anxiety scores(r=0.9232;P<0.0001)and depression scores(r=0.9682;P<0.0001).CONCLUSION:fALFF values in multiple brain regions of HR patients are abnormal,suggesting that these brain regions in HR patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of HR.
文摘BACKGROUND Diabetes mellitus is a metabolic disorder characterized by prolonged elevation of blood glucose due to various causes.Currently,the relationship between diabetic retinopathy(DR)and altered connectivity of brain function is unclear.AIM To investigate the relationship between this brain activity and clinical manifestations and behaviors of DR patients by using the amplitude of low-frequency fluctuation(ALFF)technique.METHODS Twenty-four DR patients and 24 healthy controls(HCs)matched for age and gender were enrolled.We measured and recorded average ALFF values of DR patients and HCs and then classified them using receiver operating characteristic(ROC)curves.RESULTS ALFF values of both left and right posterior cerebellar lobe and right anterior cingulate gyrus were remarkably higher in the DR patients than in the HCs;however,DR patients had lower values in the bilateral calcarine area.ROC curve analysis of different brain regions demonstrated high accuracy in the area under the curve analysis.There was no significant relationship between mean ALFF values for different regions and clinical presentations in DR patients.Neuronal synchronization abnormalities in some brain regions of DR patients were associated with cognitive and visual disorders.CONCLUSION Abnormal spontaneous brain activity was observed in many areas of DR patients’brains,which may suggest a possible link between clinical manifestations and behaviors in DR patients.
基金the National Natural ScienceFoundation (No.82160195)Central Government GuidesLocal Science and Technology Development Foundation(No.20211ZDG02003)+2 种基金Key Research Foundation of JiangxiProvince (No.20181BBG70004No.20203BBG73059)Excellent Talents Development Project of Jiangxi Province(No.20192BCBL23020).
文摘AIM:To assess changed spontaneous brain activity in hyperthyroid exophthalmos(HE)patients by the amplitude of the low-frequency fluctuation(ALFF)method,and to analyze the correlation between brain activity and ALFF values in these patients.METHODS:Totally 18 HE and 18 hyperthyroid nonexophthalmos(HNE)patients were enrolled.The participants were tested by resting-state functional magnetic resonance imaging,and receiver operating characteristic(ROC)curves were generated to classify the ALFF values of the study population.Pearson’s correlation analysis was utilized to evaluate the relationship between the ALFF values obtained from different brain areas and clinical manifestations.RESULTS:Contrary to HNE patients,we observed lower ALFF values in the left calcarine fissure and surrounding cortex(LCFSC)in HE patients.In the ROC curve analysis of the LCFSC,the area under the curve reflected a high degree of accuracy.In addition,there was positive correlation between mean ALFF values of the LCFSC and the bestcorrected visual acuity of the affected eyes.CONCLUSION:The study displays abnormal brain activity in LCFSC in patients with HE,which might suggest pathological mechanism of visual impairment of HE patients.
基金Supported by the Natural Science Foundation of China,No.81901373the Intelligent Medicine Research Project of Chongqing Medical University,No.ZHYX202126.
文摘BACKGROUND Major depressive disorder(MDD)tends to have a high incidence and high suicide risk.Electroconvulsive therapy(ECT)is currently a relatively effective treatment for MDD.However,the mechanism of efficacy of ECT is still unclear.AIM To investigate the changes in the amplitude of low-frequency fluctuations in specific frequency bands in patients with MDD after ECT.METHODS Twenty-two MDD patients and fifteen healthy controls(HCs)were recruited to this study.MDD patients received 8 ECT sessions with bitemporal placement.Resting-state functional magnetic resonance imaging was adopted to examine regional cerebellar blood flow in both the MDD patients and HCs.The MDD patients were scanned twice(before the first ECT session and after the eighth ECT session)to acquire data.Then,the amplitude of low-frequency fluctuations(ALFF)was computed to characterize the intrinsic neural oscillations in different bands(typical frequency,slow-5,and slow-4 bands).RESULTS Compared to before ECT(pre-ECT),we found that MDD patients after the eighth ECT(post-ECT)session had a higher ALFF in the typical band in the right middle frontal gyrus,posterior cingulate,right supramarginal gyrus,left superior frontal gyrus,and left angular gyrus.There was a lower ALFF in the right superior temporal gyrus.Compared to pre-ECT values,the ALFF in the slow-5 band was significantly increased in the right limbic lobe,cerebellum posterior lobe,right middle orbitofrontal gyrus,and frontal lobe in post-ECT patients,whereas the ALFF in the slow-5 band in the left sublobar region,right angular gyrus,and right frontal lobe was lower.In contrast,significantly higher ALFF in the slow-4 band was observed in the frontal lobe,superior frontal gyrus,parietal lobe,right inferior parietal lobule,and left angular gyrus.CONCLUSION Our results suggest that the abnormal ALFF in pre-and post-ECT MDD patients may be associated with specific frequency bands.
基金supported by Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of China,No.2020SK3006(to JL)Clinical Research Center for Medical Imaging in Hunan Province of China,No.2020SK4001(to JL)the Innovative Major Emergency Project Funding against the New Coronavirus Pneumonia in Hunan Province of China,No.2020SK3014(to JYL)。
文摘Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019(COVID-19)exhibit anxiety,depression,and altered brain microstructure,their long-term physical problems,neuropsychiatric sequelae,and changes in brain function remain unknown.This observational cohort study collected 1-year follow-up data from 22 patients who had been hospitalized with COVID-19(8 males and 11 females,aged 54.2±8.7 years).Fatigue and myalgia were persistent symptoms at the 1-year follow-up.The resting state functional magnetic resonance imaging revealed that compared with 29 healthy controls(7 males and 18 females,aged 50.5±11.6 years),COVID-19 survivors had greatly increased amplitude of low-frequency fluctuation(ALFF)values in the left precentral gyrus,middle frontal gyrus,inferior frontal gyrus of operculum,inferior frontal gyrus of triangle,insula,hippocampus,parahippocampal gyrus,fusiform gyrus,postcentral gyrus,inferior parietal angular gyrus,supramarginal gyrus,angular gyrus,thalamus,middle temporal gyrus,inferior temporal gyrus,caudate,and putamen.ALFF values in the left caudate of the COVID-19 survivors were positively correlated with their Athens Insomnia Scale scores,and those in the left precentral gyrus were positively correlated with neutrophil count during hospitalization.The long-term follow-up results suggest that the ALFF in brain regions related to mood and sleep regulation were altered in COVID-19 survivors.This can help us understand the neurobiological mechanisms of COVID-19-related neuropsychiatric sequelae.This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University(approval No.2020 S004)on March 19,2020.
基金This work was supported by National Natural Science Foundation of China under grant No.81071221.
文摘We used resting-state functional magnetic resonance imaging(fMRI)to determine whether there are any abnormalities in different frequency bands between amplitude of low-frequency fluctuations(ALFF)and fractional ALFF(fALFF)and between 10 early amnestic mild cognitive impairment(EMCI)patients and eight normal controls participating in the Alzheimer’s Disease Neuroimaging Initiative(ADNI).We showed widespread difference in ALFF/fALFF between two frequency bands(slow-4:0.027-0.073 Hz,slow-5:0.01-0.027 Hz)in many brain areas including posterior cingulate cortex(PCC),medial prefrontal cortex(MPFC),suprasellar cistern(SC)and ambient cistern(AC).Compared to the normal controls,the EMCI patients showed increased ALFF values in PCu,cerebellum,occipital lobe and cerebellum posterior lobe in frequency band slow-4.While in frequency band slow-5,the EMCI patients showed decreased ALFF values in temporal lobe,left cerebrum and middle temporal gyrus5.Moreover,the EMCI patients showed increased fALFF values in frontal lobe and inferior frontal gyrus in band slow-5.While in frequency band slow-4,the EMCI patients showed decreased fALFF values in limbic lobe,cingulate gyrus and corpus callosum.These results demonstrated that EMCI patients had widespread abnormalities of amplitude of LFF in different frequency bands.
基金supported by the Science and Technology Support Program of Sichuan Province(2018JY0562)the National Natural Science Foundation of China(81722050,81973962 and U1808204)the Key Project of Research and Development of Ministry of Science and Technology(2018AAA0100705).
文摘Background:The pathogenesis of neck pain in the brain,which is the fourth most common cause of disability,remains unclear.Furthermore,little is known about the characteristics of dynamic local functional brain activity in cervical pain.Objective:The present study aimed to investigate the changes of local brain activity caused by chronic neck pain and the factors leading to neck pain.Methods:Using the amplitude of low-frequency fluctuations(ALFF)method combined with sliding window approach,we compared local brain activity that was measured by the functional magnetic resonance imaging(fMRI)of 107 patients with chronic neck pain(CNP)with that of 57 healthy control participants.Five pathogenic factors were selected for correlation analysis.Results:The group comparison results of dynamic amplitude of low-frequency fluctuation(dALFF)variability showed that patients with CNP exhibited decreased dALFF variability in the left inferior temporal gyrus,the middle temporal gyrus,the angular gyrus,the inferior parietal marginal angular gyrus,and the middle occipital gyrus.The abnormal dALFF variability of the left inferior temporal gyrus was negatively correlated with the average daily working hours of patients with neck pain.Conclusions:The findings indicated that the brain regions of patients with CNP responsible for audition,vision,memory,and emotion were subjected to temporal variability of abnormal regional brain activity.Moreover,the dALFF variability in the left inferior temporal gyrus might be a risk factor for neck pain.This study revealed the brain dysfunction of patients with CNP from the perspective of dynamic local brain activity,and highlighted the important role of dALFF variability in understanding the neural mechanism of CNP.
基金supported by the National Natural Science Foundation of China (81020108022,30770594).
文摘Objective Behavioral studies have suggested a low-frequency(0.05 Hz) fluctuation of sustained attention on the basis of the intra-individual variability of reaction-time.Conventional task designs for functional magnetic resonance imaging(fMRI) studies are not appropriate for frequency analysis.The present study aimed to propose a new paradigm,real-time finger force feedback(RT-FFF),to study the brain mechanisms of sustained attention and neurofeedback.Methods We compared the low-frequency fluctuations in both behavioral and fMRI data from 38 healthy adults(19 males;mean age,22.3 years).Two fMRI sessions,in RT-FFF and sham finger force feedback(S-FFF) states,were acquired(TR 2 s,Siemens Trio 3-Tesla scanner,8 min each,counter-balanced).Behavioral data of finger force were obtained simultaneously at a sampling rate of 250 Hz.Results Frequency analysis of the behavioral data showed lower amplitude in the lowfrequency band(0.004-0.104 Hz) but higher amplitude in the high-frequency band(27.02-125 Hz) in the RT-FFF than the S-FFF states.The mean finger force was not significantly different between the two states.fMRI data analysis showed higher fractional amplitude of low-frequency fluctuation(fALFF) in the S-FFF than in the RT-FFF state in the visual cortex,but higher fALFF in RT-FFF than S-FFF in the middle frontal gyrus,the superior frontal gyrus,and the default mode network.Conclusion The behavioral results suggest that the proposed paradigm may provide a new approach to studies of sustained attention.The fMRI results suggest that a distributed network including visual,motor,attentional,and default mode networks may be involved in sustained attention and/or real-time feedback.This paradigm may be helpful for future studies on deficits of attention,such as attention deficit hyperactivity disorder and mild traumatic brain injury.
基金supported by the Commonwealth Sciences Foundation, Ministry of Health, China (200802073)the National Basic Research Development Program, Ministry of Science and Technology, China (2007BAI17B03)+1 种基金the National Natural Sciences Foundation of China (30970802, 81000593, 81020108022, 81271652)the Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning
文摘Regional homogeneity(ReHo)and the amplitude of low-frequency fluctuation(ALFF)are two approaches to depicting different regional characteristics of resting-state functional magnetic resonance imaging(RS-fMRI)data.Whether they can complementarily reveal brain regional functional abnormalities in attention-deficit/hyperactivity disorder(ADHD)remains unknown.In this study,we applied ReHo and ALFF to 23 medication-na ve boys diagnosed with ADHD and 25 age-matched healthy male controls using whole-brain voxel-wise analysis.Correlation analyses were conducted in the ADHD group to investigate the relationship between the regional spontaneous brain activity measured by the two approaches and the clinical symptoms of ADHD.We found that the ReHo method showed widely-distributed differences between the two groups in the fronto-cingulo-occipitocerebellar circuitry,while the ALFF method showed a difference only in the right occipital area.When a larger smoothing kernel and a more lenient threshold were used for ALFF,more overlapped regions were found between ALFF and ReHo,and ALFF even found some new regions with group differences.The ADHD symptom scores were correlated with the ReHo values in the right cerebellum,dorsal anterior cingulate cortex and left lingual gyrus in the ADHD group,while no correlation was detected between ALFF and ADHD symptoms.In conclusion,ReHo may be more sensitive to regional abnormalities,at least in boys with ADHD,than ALFF.And ALFF may be complementary to ReHo in measuring local spontaneous activity.Combination of the two may yield a more comprehensive pathophy-siological framework for ADHD.
基金Supported by the Suzhou Clinical Medical Center for Mood Disorders,No.Szlcyxzx202109Jiangsu Provincial Department of Science and Technology for Social Development-General Project,No.BE2022735.
文摘BACKGROUND Major depression disorder(MDD)constitutes a significant mental health concern.Epidemiological surveys indicate that the lifetime prevalence of depression in adolescents is much higher than that in adults,with a corresponding increased risk of suicide.In studying brain dysfunction associated with MDD in adolescents,research on brain white matter(WM)is sparse.Some researchers even mistakenly regard the signals generated by the WM as noise points.In fact,studies have shown that WM exhibits similar blood oxygen level-dependent signal fluctuations.The alterations in WM signals and their relationship with disease severity in adolescents with MDD remain unclear.AIM To explore potential abnormalities in WM functional signals in adolescents with MDD.METHODS This study involved 48 adolescent patients with MDD and 31 healthy controls(HC).All participants were assessed using the Patient Health Questionnaire-9 Scale and the mini international neuropsychiatric interview(MINI)suicide inventory.In addition,a Siemens Skyra 3.0T magnetic resonance scanner was used to obtain the subjects'image data.The DPABI software was utilized to calculate the WM signal of the fractional amplitude of low frequency fluctuations(fALFF)and regional homogeneity,followed by a two-sample t-test between the MDD and HC groups.Independent component analysis(ICA)was also used to evaluate the WM functional signal.Pearson’s correlation was performed to assess the relationship between statistical test results and clinical scales.RESULTS Compared to HC,individuals with MDD demonstrated a decrease in the fALFF of WM in the corpus callosum body,left posterior limb of the internal capsule,right superior corona radiata,and bilateral posterior corona radiata[P<0.001,family-wise error(FWE)voxel correction].The regional homogeneity of WM increased in the right posterior limb of internal capsule and left superior corona radiata,and decreased in the left superior longitudinal fasciculus(P<0.001,FWE voxel correction).The ICA results of WM overlapped with those of regional homogeneity.The fALFF of WM signal in the left posterior limb of the internal capsule was negatively correlated with the MINI suicide scale(P=0.026,r=-0.32),and the right posterior corona radiata was also negatively correlated with the MINI suicide scale(P=0.047,r=-0.288).CONCLUSION Adolescents with MDD involves changes in WM functional signals,and these differences in brain regions may increase the risk of suicide.
文摘目的建立基于静息态功能磁共振(functional magnetic resonance imaging,fMRI)低频振幅(amplitude of low-frequency fluctuation,ALFF)数据预测早期精神分裂症(schizophrenia,SZ)患者视觉信息处理速度(visual information processing speed,VIPS)的模型。方法纳入31例早期SZ患者和33名正常对照者,用连线测验(trail making test,TMT)评估受试者VIPS,使用支持向量回归(support vector regression,SVR)以两组ALFF差异脑区作为模板定量预测患者组VIPS评分。结果两组的VIPS差异存在统计学意义(P<0.01)。与对照组相比,患者组ALFF值升高主要分布在边缘叶(P<0.01,AlphaSim校正),而ALFF值降低主要分布在额叶、顶叶和枕叶(P<0.01,AlphaSim校正)。SVR结果显示,SZ异常脑区ALFF值可有效预测VIPS(r=0.62,P=0.04)。SVR过程中权重高的脑区包括右侧楔前叶、右侧辅助运动区和右侧中央后回,其中,右侧楔前叶ALFF值与VIPS相关(r=0.50,P<0.01)。结论早期SZ患者部分异常脑区自发活动与VIPS相关且可有效预测VIPS,这提示脑区自发活动可能是SZ患者VIPS受损的预测指标和客观生物标志物。