A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati...A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.展开更多
Compelling evidence demonstrates that the levels of peripheral amyloid-β(Aβ)fluctuate in Alzheimer’s disease(AD)patients.Moreover,Aβdeposits have been identified in peripheral tissues.However,the relevance of peri...Compelling evidence demonstrates that the levels of peripheral amyloid-β(Aβ)fluctuate in Alzheimer’s disease(AD)patients.Moreover,Aβdeposits have been identified in peripheral tissues.However,the relevance of peripheral Aβ(misfolded or not)in pathological situations,and the temporal appearance of these pathological fluctuations,are not well understood.The presence of misfolded Aβin peripheral compartments raises concerns on potential inter-individual transmissions considering the well-reported prion-like properties of this disease-associated protein.The latter is supported by multiple reports demonstrating that Aβmisfolding can be transmitted between humans and experimental animals through multiple routes of exposure.In this mini-review,we discuss the potential implications of peripheral,disease-associated Aβin disease mechanisms,as well as in diagnostic and therapeutic approaches.展开更多
Pathological and clinical variability in Alzheimer's disease(AD):AD is clinically cha racterized by progressive memory loss and cognitive impairment.From a pathological point of view,the main features of AD are th...Pathological and clinical variability in Alzheimer's disease(AD):AD is clinically cha racterized by progressive memory loss and cognitive impairment.From a pathological point of view,the main features of AD are the deposition of amyloid plaques(composed of amyloid-beta,Aβ)and neurofibrillary tangles containing hyperphosphorylated Tau in the brain,accompanied by neu ronal and synaptic loss,neuroinflammation and brain atrophy(Jellinger,2022).Regardless of these common traits,growing evidence shows increased heterogen eity in the brain of AD patients considering both clinical manifestations and pathological features.展开更多
Lifestyle and demographics of the world's population are causing serious health problems impacting the brain,increasing the incidence of Alzheimer's disease(AD)and other types of dementia.Although we have gain...Lifestyle and demographics of the world's population are causing serious health problems impacting the brain,increasing the incidence of Alzheimer's disease(AD)and other types of dementia.Although we have gained important insights into the pathogenic mechanisms of AD,only palliative care is available to patients.AD is characterized by the abnormal deposition of protein aggregates in the brain formed by amyloid β and hyper-phosphorylated,Tau in addition to neuroinflammation.展开更多
The misfolding and subsequent aggregation of proteins into amyloid fibrils underlie the onset of a variety of human disorders collectively known as amyloidosis.Transthyretin(TTR)is one of the>30 amyloidogenic prote...The misfolding and subsequent aggregation of proteins into amyloid fibrils underlie the onset of a variety of human disorders collectively known as amyloidosis.Transthyretin(TTR)is one of the>30 amyloidogenic proteins identified to date and is associated with a group of highly debilitating and life-threatening disorders called TTR amyloidosis(ATTR).ATTR comprises senile systemic amyloidosis,which is linked to wild-type(WT)TTR aggregation,and hereditary ATTR,a dominantly inherited disorder caused by the deposition of one of over 130 TTR genetic variants.Senile systemic amyloidosis is a prevalent age-related amyloidosis,affecting up to 25%of the population over 80 years of age,and is characterized by the build-up of TTR fibrils in the myocardium.Regarding hereditary ATTR,the clinical presentation is highly heterogeneous,primarily affecting the peripheral nervous system(familial amyloid polyneuropathy-FAP)or the heart(familial amyloid cardiomyopathy).In rare cases,aggregation develops in the central nervous system,giving rise to a phenotype known as familial leptomeningeal amyloidosis(Carroll et al.,2022).展开更多
In the article titled“Activation of autophagy by Citri Reticulatae Semen extract ameliorates amyloid-beta-induced cell death and cognition deficits in Alzheimer’s disease”published on pages 2467-2479,Issue 11,Volum...In the article titled“Activation of autophagy by Citri Reticulatae Semen extract ameliorates amyloid-beta-induced cell death and cognition deficits in Alzheimer’s disease”published on pages 2467-2479,Issue 11,Volume 19 of Neural Regeneration Research(Tang et al.,2024),there are some errors in selecting the appropriate images in Figure 7 by authors during assembling the images.展开更多
Although many causes of Alzheimer’s disease(AD)may exist,both the original amyloid cascade and tau hypotheses posit that abnormal misfolding and accumulation of amyloid-β(Aβ)and tau protein is the central event cau...Although many causes of Alzheimer’s disease(AD)may exist,both the original amyloid cascade and tau hypotheses posit that abnormal misfolding and accumulation of amyloid-β(Aβ)and tau protein is the central event causing the pathology.However,that conclusion could be only partly true,and there is conflicting evidence about the role of both proteins in AD,being able to precede and influence one another.Some researchers argue that these proteins are mere executors rather than primary causes of pathology.Therefore,there have been continuing refinements of both hypotheses,with alternative explanations proposed.Aβand tau proteins may be independently involved in specific neurotoxic pathways;yet there may be other crucial processes going on in early AD.Moreover,accumulating evidence suggests that Aβand tau act synergistically,rather than additively in disease onset(Jeremic et al.,2021,2023a).展开更多
Data-driven drug repositioning using olfactory omics profiles-challenges and perspectives in neurodegeneration:Neurodegenerative diseases are characterized by progressive degeneration and loss of neuronal function in ...Data-driven drug repositioning using olfactory omics profiles-challenges and perspectives in neurodegeneration:Neurodegenerative diseases are characterized by progressive degeneration and loss of neuronal function in the central nervous system.These diseases are often characterized as proteinopathies,which are disorders primarily driven by the aggregation or misfolding of specific amyloid proteins within cells,leading to their dysfunction and eventual death.Despite the gain-of-function hypothesis related to the aggregation of these proteins,recently,an alternative hypothesis regarding the loss-of-function of the soluble monomeric proteins during the process of aggregation into amyloids is gaining currency.This last event is called proteinopenia and refers to conditions characterized by a deficiency or decrease in the levels of specific soluble proteins in the body(Ezzat et al.,2023).It has been demonstrated that levels of soluble proteins involved in neurodegenerative diseases are decreased.展开更多
Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neur...Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
Amyloid fibrils are highly organized protein or peptide aggregates,often characterized by a distinctive supramolecular cross-β-sheet structure.The formation and accumulation of these structures have been traditionall...Amyloid fibrils are highly organized protein or peptide aggregates,often characterized by a distinctive supramolecular cross-β-sheet structure.The formation and accumulation of these structures have been traditionally associated with neural or systemic human diseases,such as Alzheimer’s disease,Parkinson’s disease,type-2 diabetes,or amyotrophic lateral sclerosis(Wei et al.,2017;Wittung-Stafshede,2023).展开更多
Dementia is a group of diseases,including Alzheimer's disease(AD),vascular dementia,Lewy body dementia,frontotemporal dementia,Parkinson's disease dementia,metabolic dementia and toxic dementia.The treatment o...Dementia is a group of diseases,including Alzheimer's disease(AD),vascular dementia,Lewy body dementia,frontotemporal dementia,Parkinson's disease dementia,metabolic dementia and toxic dementia.The treatment of dementia mainly includes symptomatic treatment by controlling the primary disease and accompanying symptoms,nutritional support therapy for repairing nerve cells,psychological auxiliary treatment,and treatment that improves cognitive function through drugs.Among them,drug therapy to improve cognitive function is important.This review focuses on introducing and commenting on some recent progress in exploring drugs to improve cognitive function,especially the new progress in drug treatment for AD.We mainly discuss the opportunities and challenges in finding and developing new therapeutic drugs from the aspects of acetylcholinesterase,N-methyl-D-aspartate glutamate receptor,amyloid protein,tau protein and chronic immune inflammation.展开更多
Alzheimer's disease is the most common cause of dementia globally with an increasing incidence over the years,bringing a heavy burden to individuals and society due to the lack of an effective treatment.In this co...Alzheimer's disease is the most common cause of dementia globally with an increasing incidence over the years,bringing a heavy burden to individuals and society due to the lack of an effective treatment.In this context,sirtuin 2,the sirtuin with the highest expression in the brain,has emerged as a potential therapeutic target for neurodegenerative diseases.This review summarizes and discusses the complex roles of sirtuin 2 in different molecular mechanisms involved in Alzheimer's disease such as amyloid and tau pathology,microtubule stability,neuroinflammation,myelin formation,autophagy,and oxidative stress.The role of sirtuin 2 in all these processes highlights its potential implication in the etiology and development of Alzheimer's disease.However,its presence in different cell types and its enormous variety of substrates leads to apparently contra dictory conclusions when it comes to understanding its specific functions.Further studies in sirtuin 2 research with selective sirtuin2 modulators targeting specific sirtuin 2 substrates are necessary to clarify its specific functions under different conditions and to validate it as a novel pharmacological target.This will contribute to the development of new treatment strategies,not only for Alzheimer's disease but also for other neurodegenerative diseases.展开更多
Brain vascular dysfunction in Alzheimer s disease(AD) pathogenesis has become increasingly clea r.Accumulating evidence shows that damaged vascular,including large or small vessels and even neurovascular unit,may acce...Brain vascular dysfunction in Alzheimer s disease(AD) pathogenesis has become increasingly clea r.Accumulating evidence shows that damaged vascular,including large or small vessels and even neurovascular unit,may accelerate the neuropathological process of AD via disrupting brain hypoperfusion,aberrant angiogenesis,and neuroinflammatory response,etc.Thus,vascular dysfunction makes a substantially contribution to the cognitive decline of AD patients.展开更多
Dysfunction in circadian rhythms is a common occurrence in patients with Alzheimer’s disease.A predominant function of the retina is circadian synchronization,carrying information to the brain through the retinohypot...Dysfunction in circadian rhythms is a common occurrence in patients with Alzheimer’s disease.A predominant function of the retina is circadian synchronization,carrying information to the brain through the retinohypothalamic tract,which projects to the suprachiasmatic nucleus.Notably,Alzheimer’s disease hallmarks,including amyloid-β,are present in the retinas of Alzheimer’s disease patients,followed/associated by structural and functional disturbances.However,the mechanistic link between circadian dysfunction and the pathological changes affecting the retina in Alzheimer’s disease is not fully understood,although some studies point to the possibility that retinal dysfunction could be considered an early pathological process that directly modulates the circadian rhythm.展开更多
The amyloid—what peptide can resist its entropic bliss?Without kinetic barricades and chaperones,most peptides would simply tumble down that precipice.The amyloid-β(Aβ) peptides are understood to underlie the hallm...The amyloid—what peptide can resist its entropic bliss?Without kinetic barricades and chaperones,most peptides would simply tumble down that precipice.The amyloid-β(Aβ) peptides are understood to underlie the hallmark pathology of Alzheimer's disease(AD) and are considered one of the causative factors for neurodegeneration and cognitive impairment.AD affects critical connected structures within the brain that are responsible for memory,language,and social behavior.展开更多
Transmission of misfolded amyloid-β(Aβ)aggregates between human subjects:Protein misfolding disorders are a family of diseases characterized by the accumulation of misfolded protein aggregates.These proteinaceous st...Transmission of misfolded amyloid-β(Aβ)aggregates between human subjects:Protein misfolding disorders are a family of diseases characterized by the accumulation of misfolded protein aggregates.These proteinaceous structures,also known as amyloids,are key drivers of fatal neurodegenerative disorders such as prion diseases,Alzheimer’s disease(AD),Parkinson’s disease,and others.展开更多
Need for Alzheimer's disease progression monitoring:Alzheimer's disease(AD)is an irreversible progressive brain disorder that causes severe and incurable neuro-impairment.The World Health Organization estimate...Need for Alzheimer's disease progression monitoring:Alzheimer's disease(AD)is an irreversible progressive brain disorder that causes severe and incurable neuro-impairment.The World Health Organization estimates that 55 million people are affected by AD dementia by 2020 which may exceed 78 million by 2030 and 139 in 2050.The estimated cost to manage AD is above US$1.3 trillion,which will further increase to US$2.8 trillion by 2030.展开更多
In the ever-evolving landscape of Alzheimer’s treatment,lecanemab(Leqembi)has emerged as a promising drug.Unlike conventional therapies that merely alleviate symptoms,lecanemab is a humanized monoclonal antibody with...In the ever-evolving landscape of Alzheimer’s treatment,lecanemab(Leqembi)has emerged as a promising drug.Unlike conventional therapies that merely alleviate symptoms,lecanemab is a humanized monoclonal antibody with a distinct focus.It targets protofibrils,insoluble fibrils,amyloid oligomers,and soluble amyloid-beta protofibrils,which are known to be especially damaging to neurons,with high accuracy.展开更多
Alzheimer’s disease is a neurological disorder marked by the accumulation of amyloid beta(Aβ)aggregates,resulting from mutations in the amyloid precursor protein.The enzymeβ-secretase,also known asβ-site amyloid p...Alzheimer’s disease is a neurological disorder marked by the accumulation of amyloid beta(Aβ)aggregates,resulting from mutations in the amyloid precursor protein.The enzymeβ-secretase,also known asβ-site amyloid precursor protein cleaving enzyme 1(BACE1),plays a crucial role in generating Aβpeptides.With no targeted therapy available for Alzheimer’s disease,inhibiting BACE1 aspartic protease has emerged as a primary treatment target.Since 1999,compounds demonstrating potential binding to the BACE1 receptor have advanced to human trials.Structural optimization of synthetically derived compounds,coupled with computational approaches,has offered valuable insights for developing highly selective leads with drug-like properties.This review highlights pivotal studies on the design and development of BACE1 inhibitors as anti-Alzheimer’s disease agents.It summarizes computational methods employed in facilitating drug discovery for potential BACE1 inhibitors and provides an update on their clinical status,indicating future directions for novel BACE1 inhibitors.The promising clinical results of Elenbecestat(E-2609)catalyze the development of effective,selective BACE1 inhibitors in the future.展开更多
基金supported by the National Natural Science Foundation of China,No.82001155(to LL)the Natural Science Foundation of Zhejiang Province,No.LY23H090004(to LL)+5 种基金the Natural Science Foundation of Ningbo,No.2023J068(to LL)the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,No.SJLY2023008(to LL)the College Students'Scientific and Technological Innovation Project(Xin Miao Talent Plan)of Zhejiang Province,No.2022R405A045(to CC)the Student ResearchInnovation Program(SRIP)of Ningbo University,Nos.20235RIP1919(to CZ),2023SRIP1938(to YZ)the K.C.Wong Magna Fund in Ningbo University。
文摘A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.
基金supported by grants from NIH(RF1AG072491 and R01AI132695)to RM.
文摘Compelling evidence demonstrates that the levels of peripheral amyloid-β(Aβ)fluctuate in Alzheimer’s disease(AD)patients.Moreover,Aβdeposits have been identified in peripheral tissues.However,the relevance of peripheral Aβ(misfolded or not)in pathological situations,and the temporal appearance of these pathological fluctuations,are not well understood.The presence of misfolded Aβin peripheral compartments raises concerns on potential inter-individual transmissions considering the well-reported prion-like properties of this disease-associated protein.The latter is supported by multiple reports demonstrating that Aβmisfolding can be transmitted between humans and experimental animals through multiple routes of exposure.In this mini-review,we discuss the potential implications of peripheral,disease-associated Aβin disease mechanisms,as well as in diagnostic and therapeutic approaches.
基金supported by a grant from NIH(R01AI132695)to RM。
文摘Pathological and clinical variability in Alzheimer's disease(AD):AD is clinically cha racterized by progressive memory loss and cognitive impairment.From a pathological point of view,the main features of AD are the deposition of amyloid plaques(composed of amyloid-beta,Aβ)and neurofibrillary tangles containing hyperphosphorylated Tau in the brain,accompanied by neu ronal and synaptic loss,neuroinflammation and brain atrophy(Jellinger,2022).Regardless of these common traits,growing evidence shows increased heterogen eity in the brain of AD patients considering both clinical manifestations and pathological features.
基金funded by U.S.Air Force Office of Scientific Research FA9550-21-1-0096,FONDAP program 15150012,ANID/FONDEF ID1ID22I10120,FONDECY/ANID 1220573the US Army Medical Research Acquisition Activity(USAMRAA)project number AL2201415DoD Award HT9425-23-1-0990,AL220141(to CH)。
文摘Lifestyle and demographics of the world's population are causing serious health problems impacting the brain,increasing the incidence of Alzheimer's disease(AD)and other types of dementia.Although we have gained important insights into the pathogenic mechanisms of AD,only palliative care is available to patients.AD is characterized by the abnormal deposition of protein aggregates in the brain formed by amyloid β and hyper-phosphorylated,Tau in addition to neuroinflammation.
基金funded by the Spanish Ministry of Science and Innovation(PDC2021-120914-I00)the Universitat Autònoma de Barcelona(PROOF OF CONCEPT 2020)ICREA,ICREA-Academia 2015 and 2020(to SV).
文摘The misfolding and subsequent aggregation of proteins into amyloid fibrils underlie the onset of a variety of human disorders collectively known as amyloidosis.Transthyretin(TTR)is one of the>30 amyloidogenic proteins identified to date and is associated with a group of highly debilitating and life-threatening disorders called TTR amyloidosis(ATTR).ATTR comprises senile systemic amyloidosis,which is linked to wild-type(WT)TTR aggregation,and hereditary ATTR,a dominantly inherited disorder caused by the deposition of one of over 130 TTR genetic variants.Senile systemic amyloidosis is a prevalent age-related amyloidosis,affecting up to 25%of the population over 80 years of age,and is characterized by the build-up of TTR fibrils in the myocardium.Regarding hereditary ATTR,the clinical presentation is highly heterogeneous,primarily affecting the peripheral nervous system(familial amyloid polyneuropathy-FAP)or the heart(familial amyloid cardiomyopathy).In rare cases,aggregation develops in the central nervous system,giving rise to a phenotype known as familial leptomeningeal amyloidosis(Carroll et al.,2022).
文摘In the article titled“Activation of autophagy by Citri Reticulatae Semen extract ameliorates amyloid-beta-induced cell death and cognition deficits in Alzheimer’s disease”published on pages 2467-2479,Issue 11,Volume 19 of Neural Regeneration Research(Tang et al.,2024),there are some errors in selecting the appropriate images in Figure 7 by authors during assembling the images.
基金supported by grants PID2020-115823-GB100 funded by MCIN/AEI/10.13039/501100011033SBPLY/21/180501/000150 funded by JCCM/ERDF-A way of making Europe+1 种基金2022-GRIN-34354 grant by UCLM/ERDF intramural funding to LJDJDNL.DJ held a predoctoral fellowship granted by UCLM/ESF“Plan Propio de Investigación.”。
文摘Although many causes of Alzheimer’s disease(AD)may exist,both the original amyloid cascade and tau hypotheses posit that abnormal misfolding and accumulation of amyloid-β(Aβ)and tau protein is the central event causing the pathology.However,that conclusion could be only partly true,and there is conflicting evidence about the role of both proteins in AD,being able to precede and influence one another.Some researchers argue that these proteins are mere executors rather than primary causes of pathology.Therefore,there have been continuing refinements of both hypotheses,with alternative explanations proposed.Aβand tau proteins may be independently involved in specific neurotoxic pathways;yet there may be other crucial processes going on in early AD.Moreover,accumulating evidence suggests that Aβand tau act synergistically,rather than additively in disease onset(Jeremic et al.,2021,2023a).
基金funded by grants from the Spanish Ministry of Science,Innovation and Universities(Ref.PID2019-110356RB-I00/AEI/10.13039/501100011033)to JFI and ESthe Department of Economic and Business Development from Government of Navarra(Ref.0011-1411-2023-000028 to ES)+2 种基金supported by a predoctoral fellowship from the Public University of Navarra(UPNA)supported by a postdoctoral fellowship from Miguel Servet Foundation-Navarrabiomedsupported by“Programa MRR Investigo 2023”in the framework of the European Union recovery and resilience facility。
文摘Data-driven drug repositioning using olfactory omics profiles-challenges and perspectives in neurodegeneration:Neurodegenerative diseases are characterized by progressive degeneration and loss of neuronal function in the central nervous system.These diseases are often characterized as proteinopathies,which are disorders primarily driven by the aggregation or misfolding of specific amyloid proteins within cells,leading to their dysfunction and eventual death.Despite the gain-of-function hypothesis related to the aggregation of these proteins,recently,an alternative hypothesis regarding the loss-of-function of the soluble monomeric proteins during the process of aggregation into amyloids is gaining currency.This last event is called proteinopenia and refers to conditions characterized by a deficiency or decrease in the levels of specific soluble proteins in the body(Ezzat et al.,2023).It has been demonstrated that levels of soluble proteins involved in neurodegenerative diseases are decreased.
基金supported by the Hefei Comprehensive National Science Center Hefei Brain Project(to KW)the National Natural Science Foundation of China,Nos.31970979(to KW),82101498(to XW)the STI2030-Major Projects,No.2021ZD0201800(to PH).
文摘Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
文摘Amyloid fibrils are highly organized protein or peptide aggregates,often characterized by a distinctive supramolecular cross-β-sheet structure.The formation and accumulation of these structures have been traditionally associated with neural or systemic human diseases,such as Alzheimer’s disease,Parkinson’s disease,type-2 diabetes,or amyotrophic lateral sclerosis(Wei et al.,2017;Wittung-Stafshede,2023).
基金Supported by National Natural Science Foundation of China (General Program),No.32060182Qiannan Prefecture Science and Technology Plan Project in China,No.Qiannan Kehe She Zi[2022]No.1.
文摘Dementia is a group of diseases,including Alzheimer's disease(AD),vascular dementia,Lewy body dementia,frontotemporal dementia,Parkinson's disease dementia,metabolic dementia and toxic dementia.The treatment of dementia mainly includes symptomatic treatment by controlling the primary disease and accompanying symptoms,nutritional support therapy for repairing nerve cells,psychological auxiliary treatment,and treatment that improves cognitive function through drugs.Among them,drug therapy to improve cognitive function is important.This review focuses on introducing and commenting on some recent progress in exploring drugs to improve cognitive function,especially the new progress in drug treatment for AD.We mainly discuss the opportunities and challenges in finding and developing new therapeutic drugs from the aspects of acetylcholinesterase,N-methyl-D-aspartate glutamate receptor,amyloid protein,tau protein and chronic immune inflammation.
基金funded by FEDER/Ministerio de CienciaInnovacion y Universidades Agencia Estatal de Investigacion(MCIN/AEI 10.13039/501100011033)Grant(SAF2017-87595-R and PID2020-119729G8-100)(to EP)"Amigos de Ia Universidad de Navarra"and the Spanish Ministry of Universities for a fellowship(FPU)to NSS。
文摘Alzheimer's disease is the most common cause of dementia globally with an increasing incidence over the years,bringing a heavy burden to individuals and society due to the lack of an effective treatment.In this context,sirtuin 2,the sirtuin with the highest expression in the brain,has emerged as a potential therapeutic target for neurodegenerative diseases.This review summarizes and discusses the complex roles of sirtuin 2 in different molecular mechanisms involved in Alzheimer's disease such as amyloid and tau pathology,microtubule stability,neuroinflammation,myelin formation,autophagy,and oxidative stress.The role of sirtuin 2 in all these processes highlights its potential implication in the etiology and development of Alzheimer's disease.However,its presence in different cell types and its enormous variety of substrates leads to apparently contra dictory conclusions when it comes to understanding its specific functions.Further studies in sirtuin 2 research with selective sirtuin2 modulators targeting specific sirtuin 2 substrates are necessary to clarify its specific functions under different conditions and to validate it as a novel pharmacological target.This will contribute to the development of new treatment strategies,not only for Alzheimer's disease but also for other neurodegenerative diseases.
基金supported by the Science and Technology Innovation 2030-Major Projects,No.2022ZD021 1 600the National Natural Science Foundation of China,Nos.82271574 and82071204 (all to CX)。
文摘Brain vascular dysfunction in Alzheimer s disease(AD) pathogenesis has become increasingly clea r.Accumulating evidence shows that damaged vascular,including large or small vessels and even neurovascular unit,may accelerate the neuropathological process of AD via disrupting brain hypoperfusion,aberrant angiogenesis,and neuroinflammatory response,etc.Thus,vascular dysfunction makes a substantially contribution to the cognitive decline of AD patients.
文摘Dysfunction in circadian rhythms is a common occurrence in patients with Alzheimer’s disease.A predominant function of the retina is circadian synchronization,carrying information to the brain through the retinohypothalamic tract,which projects to the suprachiasmatic nucleus.Notably,Alzheimer’s disease hallmarks,including amyloid-β,are present in the retinas of Alzheimer’s disease patients,followed/associated by structural and functional disturbances.However,the mechanistic link between circadian dysfunction and the pathological changes affecting the retina in Alzheimer’s disease is not fully understood,although some studies point to the possibility that retinal dysfunction could be considered an early pathological process that directly modulates the circadian rhythm.
基金supported by the National Institutes of Health Grant (R01-AG062469)the Grantin-Aid of Research,Artistry,Scholarship program (GIA,Project 143977) at the University of Minnesotafunding from the Center for Drug Design (CDD),University of Minnesota (to SSM)。
文摘The amyloid—what peptide can resist its entropic bliss?Without kinetic barricades and chaperones,most peptides would simply tumble down that precipice.The amyloid-β(Aβ) peptides are understood to underlie the hallmark pathology of Alzheimer's disease(AD) and are considered one of the causative factors for neurodegeneration and cognitive impairment.AD affects critical connected structures within the brain that are responsible for memory,language,and social behavior.
基金supported by grants from the Alzheimer’s Association(AARGD-18-566576)NIH/NIA(RF1AG072491)NIH/NIAID(R01AI132695)to RM。
文摘Transmission of misfolded amyloid-β(Aβ)aggregates between human subjects:Protein misfolding disorders are a family of diseases characterized by the accumulation of misfolded protein aggregates.These proteinaceous structures,also known as amyloids,are key drivers of fatal neurodegenerative disorders such as prion diseases,Alzheimer’s disease(AD),Parkinson’s disease,and others.
基金Florida Polytechnic University,Lakeland,USA for providing support。
文摘Need for Alzheimer's disease progression monitoring:Alzheimer's disease(AD)is an irreversible progressive brain disorder that causes severe and incurable neuro-impairment.The World Health Organization estimates that 55 million people are affected by AD dementia by 2020 which may exceed 78 million by 2030 and 139 in 2050.The estimated cost to manage AD is above US$1.3 trillion,which will further increase to US$2.8 trillion by 2030.
文摘In the ever-evolving landscape of Alzheimer’s treatment,lecanemab(Leqembi)has emerged as a promising drug.Unlike conventional therapies that merely alleviate symptoms,lecanemab is a humanized monoclonal antibody with a distinct focus.It targets protofibrils,insoluble fibrils,amyloid oligomers,and soluble amyloid-beta protofibrils,which are known to be especially damaging to neurons,with high accuracy.
文摘Alzheimer’s disease is a neurological disorder marked by the accumulation of amyloid beta(Aβ)aggregates,resulting from mutations in the amyloid precursor protein.The enzymeβ-secretase,also known asβ-site amyloid precursor protein cleaving enzyme 1(BACE1),plays a crucial role in generating Aβpeptides.With no targeted therapy available for Alzheimer’s disease,inhibiting BACE1 aspartic protease has emerged as a primary treatment target.Since 1999,compounds demonstrating potential binding to the BACE1 receptor have advanced to human trials.Structural optimization of synthetically derived compounds,coupled with computational approaches,has offered valuable insights for developing highly selective leads with drug-like properties.This review highlights pivotal studies on the design and development of BACE1 inhibitors as anti-Alzheimer’s disease agents.It summarizes computational methods employed in facilitating drug discovery for potential BACE1 inhibitors and provides an update on their clinical status,indicating future directions for novel BACE1 inhibitors.The promising clinical results of Elenbecestat(E-2609)catalyze the development of effective,selective BACE1 inhibitors in the future.