Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves ...Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves both upper and lower motor neurons,human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions,expanding the phenotype of ALS.Although superoxide dismutase 1(SOD1)mutations represent a minority of ALS cases,the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies.Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1(SOD1-ALS),no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation.In this narrative review,we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS.The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms,pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS.展开更多
Heterogenous nuclear ribonucleoprotein G is down-regulated in the spinal cord of the Tg(SOD1*G93A)1Gur(TG)amyotrophic lateral sclerosis mouse model.However,most studies have only examined heterogenous nuclear ribonucl...Heterogenous nuclear ribonucleoprotein G is down-regulated in the spinal cord of the Tg(SOD1*G93A)1Gur(TG)amyotrophic lateral sclerosis mouse model.However,most studies have only examined heterogenous nuclear ribonucleoprotein G expression in the amyotrophic lateral sclerosis model and heterogenous nuclear ribonucleoprotein G effects in amyotrophic lateral sclerosis pathogenesis such as in apoptosis are unknown.In this study,we studied the potential mechanism of heterogenous nuclear ribonucleoprotein G in neuronal death in the spinal cord of TG and wild-type mice and examined the mechanism by which heterogenous nuclear ribonucleoprotein G induces apoptosis.Heterogenous nuclear ribonucleoprotein G in spinal cord was analyzed using immunohistochemistry and western blotting,and cell proliferation and proteins(TAR DNA binding protein 43,superoxide dismutase 1,and Bax)were detected by the Cell Counting Kit-8 and western blot analysis in heterogenous nuclear ribonucleoprotein G siRNA-transfected PC12 cells.We analyzed heterogenous nuclear ribonucleoprotein G distribution in spinal cord in the amyotrophic lateral sclerosis model at various time points and the expressions of apoptosis and proliferation-related proteins.Heterogenous nuclear ribonucleoprotein G was mainly localized in neurons.Amyotrophic lateral sclerosis mice were examined at three stages:preonset(60-70 days),onset(90-100 days)and progression(120-130 days).The number of heterogenous nuclear ribonucleoprotein G-positive cells was significantly higher in the anterior horn of the lumbar spinal cord segment of TG mice at the preonset stage than that of control group but lower than that of the control group at the onset stage.The number of heterogenous nuclear ribonucleoprotein G-positive cells in both central canal and surrounding gray matter of the whole spinal cord of TG mice at the onset stage was significantly lower than that in the control group,whereas that of the lumbar spinal cord segment of TG mice was significantly higher than that in the control group at preonset stage and significantly lower than that in the control group at the progression stage.The numbers of heterogenous nuclear ribonucleoprotein G-positive cells in the posterior horn of cervical and thoracic segments of TG mice at preonset and progression stages were significantly lower than those in the control group.The expression of heterogenous nuclear ribonucleoprotein G in the cervical spinal cord segment of TG mice was significantly higher than that in the control group at the preonset stage but significantly lower at the progression stage.The expression of heterogenous nuclear ribonucleoprotein G in the thoracic spinal cord segment of TG mice was significantly increased at the preonset stage,significantly decreased at the onset stage,and significantly increased at the progression stage compared with the control group.heterogenous nuclear ribonucleoprotein G expression in the lumbar spinal cord segment of TG mice was significantly lower than that of the control group at the progression stage.After heterogenous nuclear ribonucleoprotein G gene silencing,PC12 cell survival was lower than that of control cells.Both TAR DNA binding protein 43 and Bax expressions were significantly increased in heterogenous nuclear ribonucleoprotein G-silenced cells compared with control cells.Our study suggests that abnormal distribution and expression of heterogenous nuclear ribonucleoprotein G might play a protective effect in amyotrophic lateral sclerosis development via preventing neuronal death by reducing abnormal TAR DNA binding protein 43 generation in the spinal cord.展开更多
Amyotrophic lateral sclerosis (ALS) is a fatal progressive disorder characterized by the selective degeneration of motor neurons (MN). The impact of peripheral immune status on disease progression and MN survival ...Amyotrophic lateral sclerosis (ALS) is a fatal progressive disorder characterized by the selective degeneration of motor neurons (MN). The impact of peripheral immune status on disease progression and MN survival is becoming increasingly recognized in the ALS research field. In this review, we briefly discuss findings from mouse models of peripheral nerve injury and immunodeficiency to understand how the immune system regulates MN survival. We extend these observations to similar studies in the widely used superoxide dismutase 1 (SOD1) mouse model of ALS. Last, we present future hypotheses to identify potential causative factors that lead to immune dysregulation in ALS. The lessons from preceding work in this area offer new exciting directions to bridge the gap in our current understanding of immune mediated neuroprotection in ALS.展开更多
文摘Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves both upper and lower motor neurons,human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions,expanding the phenotype of ALS.Although superoxide dismutase 1(SOD1)mutations represent a minority of ALS cases,the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies.Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1(SOD1-ALS),no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation.In this narrative review,we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS.The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms,pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS.
基金supported by the National Natural Science Foundation of China,Nos.30560042,81160161,81360198,82160255Education Department of Jiangxi Province,Nos.GJJ13198 and GJJ170021+1 种基金Jiangxi Provincial Department of Science and Technology,Nos.[2014]-47,20142BBG70062,20171BAB215022,20192BAB205043Health and Family Planning Commission of Jiangxi Province,No.20181019(all to RSX).
文摘Heterogenous nuclear ribonucleoprotein G is down-regulated in the spinal cord of the Tg(SOD1*G93A)1Gur(TG)amyotrophic lateral sclerosis mouse model.However,most studies have only examined heterogenous nuclear ribonucleoprotein G expression in the amyotrophic lateral sclerosis model and heterogenous nuclear ribonucleoprotein G effects in amyotrophic lateral sclerosis pathogenesis such as in apoptosis are unknown.In this study,we studied the potential mechanism of heterogenous nuclear ribonucleoprotein G in neuronal death in the spinal cord of TG and wild-type mice and examined the mechanism by which heterogenous nuclear ribonucleoprotein G induces apoptosis.Heterogenous nuclear ribonucleoprotein G in spinal cord was analyzed using immunohistochemistry and western blotting,and cell proliferation and proteins(TAR DNA binding protein 43,superoxide dismutase 1,and Bax)were detected by the Cell Counting Kit-8 and western blot analysis in heterogenous nuclear ribonucleoprotein G siRNA-transfected PC12 cells.We analyzed heterogenous nuclear ribonucleoprotein G distribution in spinal cord in the amyotrophic lateral sclerosis model at various time points and the expressions of apoptosis and proliferation-related proteins.Heterogenous nuclear ribonucleoprotein G was mainly localized in neurons.Amyotrophic lateral sclerosis mice were examined at three stages:preonset(60-70 days),onset(90-100 days)and progression(120-130 days).The number of heterogenous nuclear ribonucleoprotein G-positive cells was significantly higher in the anterior horn of the lumbar spinal cord segment of TG mice at the preonset stage than that of control group but lower than that of the control group at the onset stage.The number of heterogenous nuclear ribonucleoprotein G-positive cells in both central canal and surrounding gray matter of the whole spinal cord of TG mice at the onset stage was significantly lower than that in the control group,whereas that of the lumbar spinal cord segment of TG mice was significantly higher than that in the control group at preonset stage and significantly lower than that in the control group at the progression stage.The numbers of heterogenous nuclear ribonucleoprotein G-positive cells in the posterior horn of cervical and thoracic segments of TG mice at preonset and progression stages were significantly lower than those in the control group.The expression of heterogenous nuclear ribonucleoprotein G in the cervical spinal cord segment of TG mice was significantly higher than that in the control group at the preonset stage but significantly lower at the progression stage.The expression of heterogenous nuclear ribonucleoprotein G in the thoracic spinal cord segment of TG mice was significantly increased at the preonset stage,significantly decreased at the onset stage,and significantly increased at the progression stage compared with the control group.heterogenous nuclear ribonucleoprotein G expression in the lumbar spinal cord segment of TG mice was significantly lower than that of the control group at the progression stage.After heterogenous nuclear ribonucleoprotein G gene silencing,PC12 cell survival was lower than that of control cells.Both TAR DNA binding protein 43 and Bax expressions were significantly increased in heterogenous nuclear ribonucleoprotein G-silenced cells compared with control cells.Our study suggests that abnormal distribution and expression of heterogenous nuclear ribonucleoprotein G might play a protective effect in amyotrophic lateral sclerosis development via preventing neuronal death by reducing abnormal TAR DNA binding protein 43 generation in the spinal cord.
基金supported by grants from NIH/NINDS R01 funding NS40433
文摘Amyotrophic lateral sclerosis (ALS) is a fatal progressive disorder characterized by the selective degeneration of motor neurons (MN). The impact of peripheral immune status on disease progression and MN survival is becoming increasingly recognized in the ALS research field. In this review, we briefly discuss findings from mouse models of peripheral nerve injury and immunodeficiency to understand how the immune system regulates MN survival. We extend these observations to similar studies in the widely used superoxide dismutase 1 (SOD1) mouse model of ALS. Last, we present future hypotheses to identify potential causative factors that lead to immune dysregulation in ALS. The lessons from preceding work in this area offer new exciting directions to bridge the gap in our current understanding of immune mediated neuroprotection in ALS.