In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-...In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.展开更多
We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of s...We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of sound.When the amplitudes of the source are known a priori,we prove a unique determination result of the shape and propose a level set algorithm to reconstruct the singularities.When the singularities of the source are known a priori,we show unique determination of the source amplitudes and propose a least-squares fitting algorithm to recover the source amplitudes.The analysis bridges the low-frequency source inversion problem and the inverse problem of gravimetry.The proposed algorithms are validated and quantitatively evaluated with numerical experiments in 2D and 3D.展开更多
An inverse problem of determining magnitude of groundwater pollution in a hydrologic region is investigated. By applying integral identity methods, a conditional stability for the inverse problem here is constructed w...An inverse problem of determining magnitude of groundwater pollution in a hydrologic region is investigated. By applying integral identity methods, a conditional stability for the inverse problem here is constructed with aids of an optimal adjoint problem and a suitable topology.展开更多
The elastic plate vibration model is studied under the external force. The size of the source term by the given mode of the source and some observations from the body of the plate is determined over a time interval, w...The elastic plate vibration model is studied under the external force. The size of the source term by the given mode of the source and some observations from the body of the plate is determined over a time interval, which is referred to be an inverse source problem of a plate equation. The uniqueness theorem for this problem is stated, and the fundamental solution to the plate equation is derived. In the case that the plate is driven by the harmonic load, the fundamental solution method (FSM) and the Tikhonov regularization technique axe used to calculate the source term. Numerical experiments of the Euler-Bernoulli beam and the Kirchhoff-Love plate show that the FSM can work well for practical use, no matter the source term is smooth or piecewise.展开更多
An inverse problem of determining the source term of the non-stationary transport equation was considered.The extra lateral boundary condition was chosen as the observation data.Based on a Carleman estimate on the non...An inverse problem of determining the source term of the non-stationary transport equation was considered.The extra lateral boundary condition was chosen as the observation data.Based on a Carleman estimate on the non-stationary transport equation,a global Lipschitz stability for the inverse problem was proved.展开更多
The inverse estimation of a source location of pollutant released into a turbulent flow is a probability problem instead of a deterministic one, as the turbulent flow is chaotic and irreversible. However, researches c...The inverse estimation of a source location of pollutant released into a turbulent flow is a probability problem instead of a deterministic one, as the turbulent flow is chaotic and irreversible. However, researches can be conducted to provide helpful instructions to the possible source location with corresponding uncertainty. This study aims to propose a method of inverse estimation of a passive-scalar source location. Experimental investigation of the dye plume characteristics released into a fully-developed turbulent flow is performed in a water channel. A planar laser-induced fluorescence (PLIF) technique is used to obtain two-dimensional images of spreading dye plumes at a bulk Reynolds number of 20,000. The distributions of high concentration areas in the PLIF images are chosen as features that characterize the traveling (diffusion) distance or time from the dye source. Graphical analysis is used to extract these high concentration areas. The procedure of graphical analysis has three steps: 1) binarization using a threshold to extract high concentration dye patches;2) labeling individual high-concentration dye patches in the binarized images;and 3) pixel-counting to measure the area and perimeter of each dye patch. We examine the variations of fractal dimension of patches, and the fractal dimension is observed to be almost constant irrespective of the distance from the source. The kurtosis of the probability density function curve of the logarithm dimensionless dye patch areas is found to be related with the downstream diffusion distance, based on which an inverse estimation method to locate a passive-scalar point source is proposed and evaluated.展开更多
Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and...Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.展开更多
Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical gro...Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical groundwater inverse problem,and the solution is usually ill-posed.Especially considering the spatial variability of hydraulic conductivity field,the identification process is more challenging.In this paper,the solution framework of groundwater contaminant source identification is composed with groundwater pollutant transport model(MT3DMS)and a data assimilation method(Iterative local update ensemble smoother,ILUES).In addition,Karhunen-Loève expansion technique is adopted as a PCA method to realize dimension reduction.In practical problems,the geostatistical method is usually used to characterize the hydraulic conductivity field,and only the contaminant source information is inversely calculated in the identification process.In this study,the identification of contaminant source information under Kriging K-field is compared with simultaneous identification of source information and K-field.The results indicate that it is necessary to carry out simultaneous identification under heterogeneous site,and ILUES has good performance in solving high-dimensional parameter inversion problems.展开更多
Source and mask joint optimization(SMO)is a widely used computational lithography method for state-of-the-art optical lithography process to improve the yield of semiconductor wafers.Nowadays,computational efficiency ...Source and mask joint optimization(SMO)is a widely used computational lithography method for state-of-the-art optical lithography process to improve the yield of semiconductor wafers.Nowadays,computational efficiency has become one of the most challenging issues for the development of pixelated SMO techniques.Recently,compressive sensing(CS)theory has be explored in the area of computational inverse problems.This paper proposes a CS approach to improve the computational efficiency of pixel-based SMO algorithms.To our best knowledge,this paper is the first to develop fast SMO algorithms based on the CS framework.The SMO workflow can be separated into two stages,i.e.,source optimization(SO)and mask optimization(MO).The SO and MO are formulated as the linear CS and nonlinear CS reconstruction problems,respectively.Based on the sparsity representation of the source and mask patterns on the predefined bases,the SO and MO procedures are implemented by sparse image reconstruction algorithms.A set of simulations are presented to verify the proposed CS-SMO methods.The proposed CS-SMO algorithms are shown to outperform the traditional gradient-based SMO algorithm in terms of both computational efficiency and lithography imaging performance.展开更多
In this paper,we mainly study an inverse source problem of time fractional diffusion equation in a bounded domain with an over-specified terminal condition at a fixed time.A novel regularization method,which we call t...In this paper,we mainly study an inverse source problem of time fractional diffusion equation in a bounded domain with an over-specified terminal condition at a fixed time.A novel regularization method,which we call the exponential Tikhonov regularization method with a parameter γ,is proposed to solve the inverse source problem,and the corresponding convergence analysis is given under a-priori and a-posteriori regularization parameter choice rules.Whenγis less than or equal to zero,the optimal convergence rate can be achieved and it is independent of the value of γ.However,when γ is greater than zero,the optimal convergence rate depends on the value of γ which is related to the regularity of the unknown source.Finally,numerical experiments are conducted for showing the effectiveness of the proposed exponential regularization method.展开更多
Direct and inverse scattering problems connected with the wave equation in non-homogeneous bounded domains constitute challenging actual subjects for both mathematicians and engineers. Among them one can mention, for ...Direct and inverse scattering problems connected with the wave equation in non-homogeneous bounded domains constitute challenging actual subjects for both mathematicians and engineers. Among them one can mention, for example, inverse source problems in seismology, nondestructive archeological probing, mine prospecting, inverse initial-value problems in acoustic tomography, etc. In spite of its crucial importance, almost all of the available rigorous investigations concern the case of unbounded simple domains such as layered planar or cylindrical or spherical structures. The main reason for the lack of the works related to non-homogeneous bounded structures is the extreme complexity of the explicit expressions of the Green’s functions. The aim of the present work consists in discovering some universal properties of the Green’s functions in question, which reduce enormously the difficulties arising in various applications. The universality mentioned here means that the properties are not depend on the geometrical and physical properties of the configuration. To this end one considers first the case when the domain is partially-homogeneous. Then the results are generalized to the most general case. To show the importance of the universal properties in question, they are applied to an inverse initial-value problem connected with photo-acoustic tomography.展开更多
In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a spa...In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a sparse structure.Here the sparsity is understood with respect to the pixel basis,i.e.,the source has a small support.By an elastic-net regularization method,this inverse source problem is formulated into an optimization problem and a semismooth Newton(SSN)algorithm is developed to solve it.A discretization strategy is applied in the numerical realization.Several one and two dimensional numerical examples illustrate the efficiency of the proposed method.展开更多
基金supported by National Natural Science Foundation of China(12271277)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,China.
文摘In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
基金partially supported by the NSF(Grant Nos.2012046,2152011,and 2309534)partially supported by the NSF(Grant Nos.DMS-1715178,DMS-2006881,and DMS-2237534)+1 种基金NIH(Grant No.R03-EB033521)startup fund from Michigan State University.
文摘We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of sound.When the amplitudes of the source are known a priori,we prove a unique determination result of the shape and propose a level set algorithm to reconstruct the singularities.When the singularities of the source are known a priori,we show unique determination of the source amplitudes and propose a least-squares fitting algorithm to recover the source amplitudes.The analysis bridges the low-frequency source inversion problem and the inverse problem of gravimetry.The proposed algorithms are validated and quantitatively evaluated with numerical experiments in 2D and 3D.
基金National Natural Science Foundation of China No. 10471080.
文摘An inverse problem of determining magnitude of groundwater pollution in a hydrologic region is investigated. By applying integral identity methods, a conditional stability for the inverse problem here is constructed with aids of an optimal adjoint problem and a suitable topology.
文摘The elastic plate vibration model is studied under the external force. The size of the source term by the given mode of the source and some observations from the body of the plate is determined over a time interval, which is referred to be an inverse source problem of a plate equation. The uniqueness theorem for this problem is stated, and the fundamental solution to the plate equation is derived. In the case that the plate is driven by the harmonic load, the fundamental solution method (FSM) and the Tikhonov regularization technique axe used to calculate the source term. Numerical experiments of the Euler-Bernoulli beam and the Kirchhoff-Love plate show that the FSM can work well for practical use, no matter the source term is smooth or piecewise.
文摘An inverse problem of determining the source term of the non-stationary transport equation was considered.The extra lateral boundary condition was chosen as the observation data.Based on a Carleman estimate on the non-stationary transport equation,a global Lipschitz stability for the inverse problem was proved.
文摘The inverse estimation of a source location of pollutant released into a turbulent flow is a probability problem instead of a deterministic one, as the turbulent flow is chaotic and irreversible. However, researches can be conducted to provide helpful instructions to the possible source location with corresponding uncertainty. This study aims to propose a method of inverse estimation of a passive-scalar source location. Experimental investigation of the dye plume characteristics released into a fully-developed turbulent flow is performed in a water channel. A planar laser-induced fluorescence (PLIF) technique is used to obtain two-dimensional images of spreading dye plumes at a bulk Reynolds number of 20,000. The distributions of high concentration areas in the PLIF images are chosen as features that characterize the traveling (diffusion) distance or time from the dye source. Graphical analysis is used to extract these high concentration areas. The procedure of graphical analysis has three steps: 1) binarization using a threshold to extract high concentration dye patches;2) labeling individual high-concentration dye patches in the binarized images;and 3) pixel-counting to measure the area and perimeter of each dye patch. We examine the variations of fractal dimension of patches, and the fractal dimension is observed to be almost constant irrespective of the distance from the source. The kurtosis of the probability density function curve of the logarithm dimensionless dye patch areas is found to be related with the downstream diffusion distance, based on which an inverse estimation method to locate a passive-scalar point source is proposed and evaluated.
基金Supported by the National Natural Science Foundation of China(21676216)China Postdoctoral Science Foundation(2015M582667)+2 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ5079)Key Research Project of Shaanxi Province(2015ZDXM-GY-115)the Fundamental Research Funds for the Central Universities(xjj2017124)
文摘Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.
基金supported by the Fundamental Research Funds for the Central Universities(No.22120190013)National Natural Science Foundation of China(No.41807187)
文摘Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical groundwater inverse problem,and the solution is usually ill-posed.Especially considering the spatial variability of hydraulic conductivity field,the identification process is more challenging.In this paper,the solution framework of groundwater contaminant source identification is composed with groundwater pollutant transport model(MT3DMS)and a data assimilation method(Iterative local update ensemble smoother,ILUES).In addition,Karhunen-Loève expansion technique is adopted as a PCA method to realize dimension reduction.In practical problems,the geostatistical method is usually used to characterize the hydraulic conductivity field,and only the contaminant source information is inversely calculated in the identification process.In this study,the identification of contaminant source information under Kriging K-field is compared with simultaneous identification of source information and K-field.The results indicate that it is necessary to carry out simultaneous identification under heterogeneous site,and ILUES has good performance in solving high-dimensional parameter inversion problems.
基金the National Natural Science Foundation of China(NSFC)(61675021)the Fundamental Research Funds for the Central Universities(2018CX01025).
文摘Source and mask joint optimization(SMO)is a widely used computational lithography method for state-of-the-art optical lithography process to improve the yield of semiconductor wafers.Nowadays,computational efficiency has become one of the most challenging issues for the development of pixelated SMO techniques.Recently,compressive sensing(CS)theory has be explored in the area of computational inverse problems.This paper proposes a CS approach to improve the computational efficiency of pixel-based SMO algorithms.To our best knowledge,this paper is the first to develop fast SMO algorithms based on the CS framework.The SMO workflow can be separated into two stages,i.e.,source optimization(SO)and mask optimization(MO).The SO and MO are formulated as the linear CS and nonlinear CS reconstruction problems,respectively.Based on the sparsity representation of the source and mask patterns on the predefined bases,the SO and MO procedures are implemented by sparse image reconstruction algorithms.A set of simulations are presented to verify the proposed CS-SMO methods.The proposed CS-SMO algorithms are shown to outperform the traditional gradient-based SMO algorithm in terms of both computational efficiency and lithography imaging performance.
基金supported by National Natural Science Foundation of China(11961002,11761007,11861007)Key Project of the Natural Science Foundation of Jiangxi Province(20212ACB201001).
文摘In this paper,we mainly study an inverse source problem of time fractional diffusion equation in a bounded domain with an over-specified terminal condition at a fixed time.A novel regularization method,which we call the exponential Tikhonov regularization method with a parameter γ,is proposed to solve the inverse source problem,and the corresponding convergence analysis is given under a-priori and a-posteriori regularization parameter choice rules.Whenγis less than or equal to zero,the optimal convergence rate can be achieved and it is independent of the value of γ.However,when γ is greater than zero,the optimal convergence rate depends on the value of γ which is related to the regularity of the unknown source.Finally,numerical experiments are conducted for showing the effectiveness of the proposed exponential regularization method.
文摘Direct and inverse scattering problems connected with the wave equation in non-homogeneous bounded domains constitute challenging actual subjects for both mathematicians and engineers. Among them one can mention, for example, inverse source problems in seismology, nondestructive archeological probing, mine prospecting, inverse initial-value problems in acoustic tomography, etc. In spite of its crucial importance, almost all of the available rigorous investigations concern the case of unbounded simple domains such as layered planar or cylindrical or spherical structures. The main reason for the lack of the works related to non-homogeneous bounded structures is the extreme complexity of the explicit expressions of the Green’s functions. The aim of the present work consists in discovering some universal properties of the Green’s functions in question, which reduce enormously the difficulties arising in various applications. The universality mentioned here means that the properties are not depend on the geometrical and physical properties of the configuration. To this end one considers first the case when the domain is partially-homogeneous. Then the results are generalized to the most general case. To show the importance of the universal properties in question, they are applied to an inverse initial-value problem connected with photo-acoustic tomography.
基金supported by National Science Foundation of China No.11171305 and No.91230203 and the work of X.Lu is partially supported by National Science Foundation of China No.11471253,the Fundamental Research Funds for the Central Universities(13lgzd07)and the PSTNS of Zhu Jiang in Guangzhou city(2011J2200099).
文摘In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a sparse structure.Here the sparsity is understood with respect to the pixel basis,i.e.,the source has a small support.By an elastic-net regularization method,this inverse source problem is formulated into an optimization problem and a semismooth Newton(SSN)algorithm is developed to solve it.A discretization strategy is applied in the numerical realization.Several one and two dimensional numerical examples illustrate the efficiency of the proposed method.