Methane has been demonstrated to be a feasible substrate for electricity generation in microbial fuel cells(MFCs)and denitrifying anaerobic methane oxidation(DAMO).However,these two processes were evaluated separately...Methane has been demonstrated to be a feasible substrate for electricity generation in microbial fuel cells(MFCs)and denitrifying anaerobic methane oxidation(DAMO).However,these two processes were evaluated separately in previous studies and it has remained unknown whether methane is able to simultaneously drive these processes.Here we investigated the co-occurrence and performance of these two processes in the anodic chamber of MFCs.The results showed that methane successfully fueled both electrogenesis and denitrification.Importantly,the maximum nitrate removal rate was significantly enhanced from(1.4±0.8)to(18.4±1.2)mg N/(L·day)by an electrogenic process.In the presence of DAMO,the MFCs achieved a maximum voltage of 610 mV and a maximum power density of 143±12 mW/m^(2).Electrochemical analyses demonstrated that some redox substances(e.g.riboflavin)were likely involved in electrogenesis and also in the denitrification process.High-throughput sequencing indicated that the methanogen Methanobacterium,a close relative of Methanobacterium espanolae,catalyzed methane oxidation and cooperated with both exoelectrogens and denitrifiers(e.g.,Azoarcus).This work provides an effective strategy for improving DAMO in methane-powered MFCs,and suggests that methanogens and denitrifiers may jointly be able to provide an alternative to archaeal DAMO for methane-dependent denitrification.展开更多
分别驯化、培养厌氧消化菌和反硝化菌,以间距180μm(80目)的不锈钢网为电极,构建了单室型无质子交换膜微生物燃料电池(MFC)污水处理系统,厌氧消化菌在阳极附着成膜组成生物阳极氧化去除有机污染物,反硝化菌在阴极附着成膜组成生物阴极...分别驯化、培养厌氧消化菌和反硝化菌,以间距180μm(80目)的不锈钢网为电极,构建了单室型无质子交换膜微生物燃料电池(MFC)污水处理系统,厌氧消化菌在阳极附着成膜组成生物阳极氧化去除有机污染物,反硝化菌在阴极附着成膜组成生物阴极反硝化去除含氮污染物,实现污水深度处理。在电池系统稳定运行期间,最高开路电压为182.5 mV时,COD的去除率为96.5%;NH4+-N和NO3-N的去除率分别高于93.5%和96.7%,出水中NO2-N的含量低于0.072 mg L 1。当阳极室和阴极室分开时,COD、NH4+-N和NO3-N的最大去除率之和分别为67.0%、76.9%和84.0%,均明显低于阳极室和阴极室连通的MFC系统的去除率,这表明该MFC系统具有良好的有机污染物和含氮污染物协同去除能力。展开更多
【背景】甲烷厌氧氧化(anaerobic oxidation of methane,AOM)包含反硝化型甲烷厌氧氧化和硫酸盐还原型甲烷厌氧氧化。目前,人们向水体中排放过量的含氮及含硫污染物,引起了严重的环境污染和生态破坏。【目的】利用甲烷厌氧氧化微生物燃...【背景】甲烷厌氧氧化(anaerobic oxidation of methane,AOM)包含反硝化型甲烷厌氧氧化和硫酸盐还原型甲烷厌氧氧化。目前,人们向水体中排放过量的含氮及含硫污染物,引起了严重的环境污染和生态破坏。【目的】利用甲烷厌氧氧化微生物燃料电池(microbial fuel cell,MFC)研究同步脱氮除硫耦合反应机理及反应过程中微生物的多样性信息。【方法】构建了3个微生物燃料电池(N-S-MFC、N-MFC、S-MFC),以甲烷作为唯一碳源,探究其同步脱氮除硫性能,并采用16S rRNA基因高通量测序技术对微生物群落结构进行分析。【结果】N-S-MFC中硝酸盐和硫酸盐的去除率分别为90.91%和18.46%。阳极室中微生物的相对丰度提高,与反硝化及硫酸盐还原菌相关的微生物大量富集,如门水平上拟杆菌门(Bacteroidota)、厚壁菌门(Firmicutes)和脱硫杆菌门(Desulfobacterota),同时属水平上Methylobacterium_Methylorubrum、Methylocaldum、Methylomonas等常见的甲烷氧化菌增多。【结论】N-S-MFC促进了硝酸盐还原,而对硫酸盐还原几乎无影响,本研究为甲烷MFC在污水中同步脱氮除硫的应用提供理论依据。展开更多
基金supported by the National Natural Science Foundation of China(No.42077284)the Natural Science Foundation of Fujian Province,China(No.2020J02015)the Fund for Outstanding Young Scientific Talent Cultivation Program of Fujian Agriculture and Forestry University of China(No.XJQ201906).
文摘Methane has been demonstrated to be a feasible substrate for electricity generation in microbial fuel cells(MFCs)and denitrifying anaerobic methane oxidation(DAMO).However,these two processes were evaluated separately in previous studies and it has remained unknown whether methane is able to simultaneously drive these processes.Here we investigated the co-occurrence and performance of these two processes in the anodic chamber of MFCs.The results showed that methane successfully fueled both electrogenesis and denitrification.Importantly,the maximum nitrate removal rate was significantly enhanced from(1.4±0.8)to(18.4±1.2)mg N/(L·day)by an electrogenic process.In the presence of DAMO,the MFCs achieved a maximum voltage of 610 mV and a maximum power density of 143±12 mW/m^(2).Electrochemical analyses demonstrated that some redox substances(e.g.riboflavin)were likely involved in electrogenesis and also in the denitrification process.High-throughput sequencing indicated that the methanogen Methanobacterium,a close relative of Methanobacterium espanolae,catalyzed methane oxidation and cooperated with both exoelectrogens and denitrifiers(e.g.,Azoarcus).This work provides an effective strategy for improving DAMO in methane-powered MFCs,and suggests that methanogens and denitrifiers may jointly be able to provide an alternative to archaeal DAMO for methane-dependent denitrification.
文摘分别驯化、培养厌氧消化菌和反硝化菌,以间距180μm(80目)的不锈钢网为电极,构建了单室型无质子交换膜微生物燃料电池(MFC)污水处理系统,厌氧消化菌在阳极附着成膜组成生物阳极氧化去除有机污染物,反硝化菌在阴极附着成膜组成生物阴极反硝化去除含氮污染物,实现污水深度处理。在电池系统稳定运行期间,最高开路电压为182.5 mV时,COD的去除率为96.5%;NH4+-N和NO3-N的去除率分别高于93.5%和96.7%,出水中NO2-N的含量低于0.072 mg L 1。当阳极室和阴极室分开时,COD、NH4+-N和NO3-N的最大去除率之和分别为67.0%、76.9%和84.0%,均明显低于阳极室和阴极室连通的MFC系统的去除率,这表明该MFC系统具有良好的有机污染物和含氮污染物协同去除能力。