Anaerobic digestion(AD)operating under conditions of organic overload stress typically exacerbates the potential for process instability,thereby resulting in significant economic and ecological ramifications.In this i...Anaerobic digestion(AD)operating under conditions of organic overload stress typically exacerbates the potential for process instability,thereby resulting in significant economic and ecological ramifications.In this investigation,an augmented substrate-to-inoculum ratio(S/I)along with varying total solid content(TS)levels was employed to replicate diverse organic loadings,utilizing maize straw and cattle manure.The findings reveal that a moderate augmentation in S/I and TS proves advantageous in augmenting methane yield,while an excessive substrate loading diminishes methane yield,hampers the kinetics of methane production,and even induces severe process instability.Kinetic study also displayed the variation of the model parameters for the first-order model,the modified Gompertze model,and the transfer function model.Both the modified Gompertze model and transfer function model exhibited the same environmental stress trend.Thus,both the increase in particulate content and the increase in S/I had a substantial effect on the substrate conversion rate to methane.Microbial analysis demonstrates the dominant influence of Firmicutes and Methanosarcina under different organic loading stresses.From both a kinetic and a microbiological point of view,this work provides novel insights into the fundamental processes that regulate anaerobic digestion(AD)under varying loading stress.Furthermore,it has significant implications for improving the operating efficiency of AD,which is a significant benefit.展开更多
To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice stra...To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice straw with CaOLFD pretreatment was optimal in different pretreatment methods of the CaO+LFD,CaOLFD,LFD+CaO,CaO,and LFD.The maximum methane yield(314 ml(g VS)^(-1))and the highest VFAs concentration(14851 mg·L^(-1) on day 3)of the CaOLFD pretreatment group were 81%and 118%higher than that of the control group,respectively.Under the action of solid alkaline CaO,the bacteria of Clostridium,Atopostipes,Sphaerochaeta,Tissierella,Thiopseudomonas,Rikenellaceae,and Sedimentibacter could build up co-cultures with the archaeal of Methanosaeta,Methanobacterium,and Methanosarcina performing direct interspecies electron transfer(DIET)and improving AD performance of rice straw.Therefore,the combined pretreatment using CaO and LFD could not only pretreat rice straw but also stimulate co-cultures of microorganism to establish DIET enhancing AD efficiency.展开更多
Anaerobic digestion is widely used in the treatment of industrial wastewater,excess activated sludge,municipal waste,crop straw and livestock manure,with the functions of environmental protection and energy recovery. ...Anaerobic digestion is widely used in the treatment of industrial wastewater,excess activated sludge,municipal waste,crop straw and livestock manure,with the functions of environmental protection and energy recovery. This review summarizes and evaluates the present knowledge of effects of different states of Fe( ZVI,Fe( II),Fe( III)) on hydrogen and methane production in anaerobic digestion process. The potential promotion effects of iron oxides nanoparticles( IONPs),especially magnetite nanoparticles on anaerobic digestion are also mentioned. Fe plays important role in transporting electron,stimulating bacterial growth and increasing hydrogen and methane production rate by promoting enzyme activity. Adding Fe with different morphologies and valence states in anaerobic digestion to increase biogas( hydrogen and methane) production and enhance organic matter degradation simultaneously,which has attracted many scientists' attention in recent years. Rapid progress in this area has been made over the last few years,since Fe is essential to the fermentative hydrogen and methane production,while few is known about how Fe affects the fermentative biogas production. This review is significant to maintain the stable operation of the biogas project.展开更多
This study aimed to investigate potential methane production through anaerobic co-digestion of rice straw and digested swine manure with different total solids.The research was carried out in bench scale with utilizin...This study aimed to investigate potential methane production through anaerobic co-digestion of rice straw and digested swine manure with different total solids.The research was carried out in bench scale with utilizing batch system.To evaluate the stability of anaerobic co-digestion process,the experiment was run in triplicate.The anaerobic co-digestion process was operated in 500 mL batch digesters under constant agitation speed and temperature.The agitation speed was maintained at 270 r/min.Temperature of the batch system was set and maintained at 35℃.Digested swine manure utilized in this experiment was obtained from semi-continuous digesters run at steady state condition,with 25 days of hydraulic retention time under mesophilic condition.Rice straw(RS)generated the highest methane production at 3% total solids(TS)which was around(1814±47.43)mL,where in this concentration,it had C:N ratio at 10.6:1.Rice straw obtained the highest methane yield at 3% TS,which was around(141.4±3.70)mL CH_(4)/g volatile solids(VS)added.Rice straw also had the highest chemical oxygen demand(COD)removal and VS reduction at 3% TS which were around(52.97%±1.46%)and(61.81%±1.04%),respectively.展开更多
The present research work aims to explore the potency of piranha solutions at the best-optimized concentrations,i.e.,40%and 30%to reduce the recalcitrant and heterogeneous structure of wheat straw,and the treated whea...The present research work aims to explore the potency of piranha solutions at the best-optimized concentrations,i.e.,40%and 30%to reduce the recalcitrant and heterogeneous structure of wheat straw,and the treated wheat straw was denoted as WS40 and WS30.The effect of pretreatment on wheat straw was determined by anaerobic digestion(AD)in a batch mode,followed by the analysis of soluble chemical oxygen demand(sCOD)and volatile fatty acids(VFAs).After pretreatment,the surface fibers shattered and detached,showing a distorted surface of wheat straw.An increase in the crystallinity of wheat straw after pretreatment was also observed due to the removal of amorphous cellulose and lignin.Enhancement in methane yield was obtained on the 9th day,which was 103±6.92 and 99.33±0.57 mL/d for WS40 and WS30,respectively.Displaced water measurement revealed that the pretreatment of wheat straw minimized the hydrolysis period by 14 days.It also improved the methane yield by 2.65(WS40)and 2.45(WS30)fold in comparison with the control which yielded 35.66 mL/d methane on the 23rd day.The modified Gompertz model(MGM),logistic function model(LFM)and transference function model(TFM)adequately described the degradation process and explained the kinetic behavior of the cumulative methane yield.Among the three models,MGM was found to fit best for the methane yield of WS40 and WS30.展开更多
利用农作物秸秆进行厌氧发酵生产沼气是解决我国农村能源紧张的重要途径,然而秸秆中难以降解的木质纤维结构导致在发酵过程中甲烷转化率较低。利用自行设计的可控性恒温发酵装置,以玉米秸秆为发酵原料,分析了在不同温度条件下氢氧化...利用农作物秸秆进行厌氧发酵生产沼气是解决我国农村能源紧张的重要途径,然而秸秆中难以降解的木质纤维结构导致在发酵过程中甲烷转化率较低。利用自行设计的可控性恒温发酵装置,以玉米秸秆为发酵原料,分析了在不同温度条件下氢氧化钠(NaOH)预处理对秸秆木质纤维结构以及厌氧发酵产气效率的影响。结果表明, NaOH预处理能够显著降低玉米秸秆的木质纤维素含量,与未预处理的秸秆相比,经NaOH处理后的秸秆纤维素含量降低了24.4%~33.2%,半纤维素含量降低了14.2%~52.4%,木质素含量降低了9.3%~29.3%。在6%、8%和10%浓度中,经8%NaOH处理的秸秆在55℃下的甲烷产量最高,达到188.7 ml CH4·(gVS)-1,较未处理的增加了84.2%,因此可作为提高秸秆厌氧发酵产气效率的预处理方法。展开更多
基金the Key R&D Project of Heilongjiang Province(Grant No.GY2021ZB0253/GA21D009)the Technological Project of Heilongjiang Province“the open competition mechanism to select the best candidates”(Grant No.2022ZXJ05C01)Guangzhou Science and Technology Plan Project(Grant No.2023B03J1229).
文摘Anaerobic digestion(AD)operating under conditions of organic overload stress typically exacerbates the potential for process instability,thereby resulting in significant economic and ecological ramifications.In this investigation,an augmented substrate-to-inoculum ratio(S/I)along with varying total solid content(TS)levels was employed to replicate diverse organic loadings,utilizing maize straw and cattle manure.The findings reveal that a moderate augmentation in S/I and TS proves advantageous in augmenting methane yield,while an excessive substrate loading diminishes methane yield,hampers the kinetics of methane production,and even induces severe process instability.Kinetic study also displayed the variation of the model parameters for the first-order model,the modified Gompertze model,and the transfer function model.Both the modified Gompertze model and transfer function model exhibited the same environmental stress trend.Thus,both the increase in particulate content and the increase in S/I had a substantial effect on the substrate conversion rate to methane.Microbial analysis demonstrates the dominant influence of Firmicutes and Methanosarcina under different organic loading stresses.From both a kinetic and a microbiological point of view,this work provides novel insights into the fundamental processes that regulate anaerobic digestion(AD)under varying loading stress.Furthermore,it has significant implications for improving the operating efficiency of AD,which is a significant benefit.
基金supported by the National Key Research&Development Program of Ministry of Science and Technology of the People’s Republic of China(grant number 2018YFC1900901).
文摘To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice straw with CaOLFD pretreatment was optimal in different pretreatment methods of the CaO+LFD,CaOLFD,LFD+CaO,CaO,and LFD.The maximum methane yield(314 ml(g VS)^(-1))and the highest VFAs concentration(14851 mg·L^(-1) on day 3)of the CaOLFD pretreatment group were 81%and 118%higher than that of the control group,respectively.Under the action of solid alkaline CaO,the bacteria of Clostridium,Atopostipes,Sphaerochaeta,Tissierella,Thiopseudomonas,Rikenellaceae,and Sedimentibacter could build up co-cultures with the archaeal of Methanosaeta,Methanobacterium,and Methanosarcina performing direct interspecies electron transfer(DIET)and improving AD performance of rice straw.Therefore,the combined pretreatment using CaO and LFD could not only pretreat rice straw but also stimulate co-cultures of microorganism to establish DIET enhancing AD efficiency.
基金Sponsored by the National Natural Science Foundation for Youth of China(Grant No.51308149)Major Science and Technology Program for Water Pollution Control Treatment(Grant No.2014ZX07201-012+1 种基金2013ZX07201007-001)State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(Grant No.2014TS08)
文摘Anaerobic digestion is widely used in the treatment of industrial wastewater,excess activated sludge,municipal waste,crop straw and livestock manure,with the functions of environmental protection and energy recovery. This review summarizes and evaluates the present knowledge of effects of different states of Fe( ZVI,Fe( II),Fe( III)) on hydrogen and methane production in anaerobic digestion process. The potential promotion effects of iron oxides nanoparticles( IONPs),especially magnetite nanoparticles on anaerobic digestion are also mentioned. Fe plays important role in transporting electron,stimulating bacterial growth and increasing hydrogen and methane production rate by promoting enzyme activity. Adding Fe with different morphologies and valence states in anaerobic digestion to increase biogas( hydrogen and methane) production and enhance organic matter degradation simultaneously,which has attracted many scientists' attention in recent years. Rapid progress in this area has been made over the last few years,since Fe is essential to the fermentative hydrogen and methane production,while few is known about how Fe affects the fermentative biogas production. This review is significant to maintain the stable operation of the biogas project.
基金funding the program in the Department of Biological and Agricultural Engineering,North Carolina State University(NCSU).
文摘This study aimed to investigate potential methane production through anaerobic co-digestion of rice straw and digested swine manure with different total solids.The research was carried out in bench scale with utilizing batch system.To evaluate the stability of anaerobic co-digestion process,the experiment was run in triplicate.The anaerobic co-digestion process was operated in 500 mL batch digesters under constant agitation speed and temperature.The agitation speed was maintained at 270 r/min.Temperature of the batch system was set and maintained at 35℃.Digested swine manure utilized in this experiment was obtained from semi-continuous digesters run at steady state condition,with 25 days of hydraulic retention time under mesophilic condition.Rice straw(RS)generated the highest methane production at 3% total solids(TS)which was around(1814±47.43)mL,where in this concentration,it had C:N ratio at 10.6:1.Rice straw obtained the highest methane yield at 3% TS,which was around(141.4±3.70)mL CH_(4)/g volatile solids(VS)added.Rice straw also had the highest chemical oxygen demand(COD)removal and VS reduction at 3% TS which were around(52.97%±1.46%)and(61.81%±1.04%),respectively.
基金the financial support received from University Grant Commission(UGC),New Delhi,in the form of National Fellowship for Scheduled Caste Students(UGC-Ref.No.200510367941)。
文摘The present research work aims to explore the potency of piranha solutions at the best-optimized concentrations,i.e.,40%and 30%to reduce the recalcitrant and heterogeneous structure of wheat straw,and the treated wheat straw was denoted as WS40 and WS30.The effect of pretreatment on wheat straw was determined by anaerobic digestion(AD)in a batch mode,followed by the analysis of soluble chemical oxygen demand(sCOD)and volatile fatty acids(VFAs).After pretreatment,the surface fibers shattered and detached,showing a distorted surface of wheat straw.An increase in the crystallinity of wheat straw after pretreatment was also observed due to the removal of amorphous cellulose and lignin.Enhancement in methane yield was obtained on the 9th day,which was 103±6.92 and 99.33±0.57 mL/d for WS40 and WS30,respectively.Displaced water measurement revealed that the pretreatment of wheat straw minimized the hydrolysis period by 14 days.It also improved the methane yield by 2.65(WS40)and 2.45(WS30)fold in comparison with the control which yielded 35.66 mL/d methane on the 23rd day.The modified Gompertz model(MGM),logistic function model(LFM)and transference function model(TFM)adequately described the degradation process and explained the kinetic behavior of the cumulative methane yield.Among the three models,MGM was found to fit best for the methane yield of WS40 and WS30.
文摘利用农作物秸秆进行厌氧发酵生产沼气是解决我国农村能源紧张的重要途径,然而秸秆中难以降解的木质纤维结构导致在发酵过程中甲烷转化率较低。利用自行设计的可控性恒温发酵装置,以玉米秸秆为发酵原料,分析了在不同温度条件下氢氧化钠(NaOH)预处理对秸秆木质纤维结构以及厌氧发酵产气效率的影响。结果表明, NaOH预处理能够显著降低玉米秸秆的木质纤维素含量,与未预处理的秸秆相比,经NaOH处理后的秸秆纤维素含量降低了24.4%~33.2%,半纤维素含量降低了14.2%~52.4%,木质素含量降低了9.3%~29.3%。在6%、8%和10%浓度中,经8%NaOH处理的秸秆在55℃下的甲烷产量最高,达到188.7 ml CH4·(gVS)-1,较未处理的增加了84.2%,因此可作为提高秸秆厌氧发酵产气效率的预处理方法。