期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
不同介体厌氧流化床微生物燃料电池产电特性研究 被引量:8
1
作者 孔维芳 郭庆杰 王许云 《高校化学工程学报》 EI CAS CSCD 北大核心 2011年第5期858-863,共6页
在空气阴极、单室、无膜液固厌氧流化床微生物燃料电池(AFBMFC)中,以污水和椰壳活性炭为液相和固相,分别以亚甲基蓝(MB)、中性红(NR)及铁氰化钾为电子介体,考察电子介体的种类和浓度对厌氧流化床微生物燃料电池产电性能的影响。实验结... 在空气阴极、单室、无膜液固厌氧流化床微生物燃料电池(AFBMFC)中,以污水和椰壳活性炭为液相和固相,分别以亚甲基蓝(MB)、中性红(NR)及铁氰化钾为电子介体,考察电子介体的种类和浓度对厌氧流化床微生物燃料电池产电性能的影响。实验结果表明,亚甲基蓝可以提高AFBMFC产电量,但增加幅度较小;添加铁氰化钾后,电池正负极逆转,且产电量减小,使用这两种介体产电性能均不理想。添加中性红后,MFC的内阻显著降低。以1.7 mmol·L-1中性红为电子介体时获得最大输出电压650 mV,最大输出功率密度330 mW·m-2,COD去除率为91%。对于厌氧流化床微生物燃料电池而言,中性红是一种较为理想的电子介体。 展开更多
关键词 微生物燃料电池 电子介体 中性红 亚甲基蓝 铁氰化钾
下载PDF
厌氧流化床微生物燃料电池同步除碳脱氮产电性能影响因素 被引量:6
2
作者 黄健盛 杨平 +2 位作者 杨长军 穆世江 穆斌 《环境污染与防治》 CAS CSCD 北大核心 2012年第5期28-34,共7页
研究了厌氧流化床微生物燃料电池(AFB-MFC)除碳脱氮产电性能的影响因素。结果表明:(1)AFB-MFC对NH4+-N的去除不起作用。电压下降主要是由于进水有机基质浓度下降造成。(2)不添加NO3--N时,在满足AFB-MFC脱氮所需的电子供体条件下增加进水... 研究了厌氧流化床微生物燃料电池(AFB-MFC)除碳脱氮产电性能的影响因素。结果表明:(1)AFB-MFC对NH4+-N的去除不起作用。电压下降主要是由于进水有机基质浓度下降造成。(2)不添加NO3--N时,在满足AFB-MFC脱氮所需的电子供体条件下增加进水COD/TN有利于AFB-MFC产电。(3)3种无机氮共存下,AFB-MFC在进水有机碳与无机氮质量比(C/N)不低于1.37时,对COD、NO2--N和NO3--N具有理想的去除效果。AFB-MFB在一定进水C/N范围内(1.37~2.50),能得到稳定的输出电压及功率密度。(4)固定进水C/N时,AFB-MFC在高碳氮负荷下仍能得到较理想的NO2--N、NO3--N、COD去除效果,AFB-MFC对NH4+-N去除效果不明显;增加碳氮负荷,AFB-MFC输出电压及功率密度没有明显的改变。(5)有机基质浓度不变下,AFB-MFC中充足的电子供体可保证较高的NO3--N、COD去除率。AFB-MFC输出电压及功率密度随着时间延长而先增加至稳定值后下降。 展开更多
关键词 厌氧流化床微生物燃料电池 除碳 脱氮 产电 电子供体
下载PDF
影响AFB-MFC同步脱氮除硫性能因素的研究 被引量:4
3
作者 陈婷婷 肖蓉蓉 +1 位作者 施金豆 杨平 《环境科学与技术》 CAS CSCD 北大核心 2013年第10期85-89,117,共6页
厌氧流化床微生物燃料电池(AFB-MFC)用于处理含氮、硫的废水,其运行效能受到多种因素的影响,研究该反应器运行参数极为重要。利用人工配制的含氮、硫的有机废水作为原水,研究了AFB-MFC同步脱氮除硫产电性能影响因素。结果表明:随着有机... 厌氧流化床微生物燃料电池(AFB-MFC)用于处理含氮、硫的废水,其运行效能受到多种因素的影响,研究该反应器运行参数极为重要。利用人工配制的含氮、硫的有机废水作为原水,研究了AFB-MFC同步脱氮除硫产电性能影响因素。结果表明:随着有机物浓度的降低,NH4+-N、SO42-去除率下降,且变化趋势一致,有机物浓度低产电量减少;AFB-MFC对低碳硫废水(COD/SO42-)的耐受限值约为0.56,说明AFB-MFC对低碳硫比废水有很好的适应性;氨氮负荷的增加导致COD与氨氮的去除率下降,产电量下降,但SO42-的去除率仍稳定保持在80%以上;缩短水力停留时间(HRT)COD的去除率下降,SO42-的去除率大幅提高,而NH4+-N的去除效率出现先提高后下降的趋势。当HRT=12 h时,同步脱氮除硫的效果最好,NH4+-N和SO42-的最高去除率分别达到25.71%和93.07%。研究结果为该微生物燃料电池用于处理含硫氮废水的最佳操作条件提供了依据。 展开更多
关键词 厌氧流化床微生物燃料电池 脱氮 除硫 厌氧氨氧化 水力停留时间
下载PDF
同步产电及废水处理AFB-MFC电极研究 被引量:2
4
作者 黄健盛 杨平 郭勇 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2010年第3期195-200,共6页
为了考察电极因素对微生物燃料电池产电及废水处理性能的影响,设计了一种新型厌氧流化床微生物燃料电池(AFB-MFC)。研究了不同阴极电极材料,阴极与阳极面积以及阴极底边与阴极室底部距离对AFB-MFC产电及废水处理性能的影响。所有实验在... 为了考察电极因素对微生物燃料电池产电及废水处理性能的影响,设计了一种新型厌氧流化床微生物燃料电池(AFB-MFC)。研究了不同阴极电极材料,阴极与阳极面积以及阴极底边与阴极室底部距离对AFB-MFC产电及废水处理性能的影响。所有实验在阴极室曝气量为16~24L/h、回流量为10.7L/h、进水流量为0.6L/h、外电阻为250Ω以及进水COD浓度为3000.98~3789.44mg/L下进行。结果表明,在尺寸大小均为15.0cm×3.5cm的碳纸、铜板、铝板、镀锌铁板及铁板中,使用碳纸作阴极电极时AFB-MFC产电性能最好;阴极底边与阴极室底部的最佳距离为17.3~20.3cm;使用面积为308.8、232.0、160.0和76.8cm2的碳纸作阳极电极及面积为241.5、210.0、175.0和105.0cm2碳纸作阴极时,阳极及阴极最佳面积分别为160.0和210.0cm2。AFB-MFC系统最佳运行条件下COD的去除率维持在约80.00%。放大型AFB-MFC系统有利于今后工程实际应用。 展开更多
关键词 微生物燃料电池 厌氧流化床 产电 废水处理 阴极 阳极
下载PDF
AFB-MFC系统有机基质降解及产电模型
5
作者 黄健盛 杨平 郭勇 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2011年第4期169-173,共5页
为了探明厌氧流化床微生物燃料电池(AFB-MFC)产电及有机基质降解之间的关系,基于AFB-MFC阳极系统物料平衡和微生物的增长建立了有机基质降解数学模型,并基于进水流量、外电阻及有机基质浓度建立了产电模型,通过AFB-MFC系统处理高浓度有... 为了探明厌氧流化床微生物燃料电池(AFB-MFC)产电及有机基质降解之间的关系,基于AFB-MFC阳极系统物料平衡和微生物的增长建立了有机基质降解数学模型,并基于进水流量、外电阻及有机基质浓度建立了产电模型,通过AFB-MFC系统处理高浓度有机废水试验对有机基质降解模型和产电模型进行了验证。AFB-MFC系统有机基质降解动力学模型为q=0.607S/(398.82+S),产电模型为:U=96485S/8*Q·[6×10-6S-0.0133]·Rex。 展开更多
关键词 厌氧流化床 微生物燃料电池 产电 有机基质 降解
下载PDF
厌氧流化床微生物燃料电池堆栈产电性能 被引量:1
6
作者 宫本月 刘新民 郭庆杰 《青岛科技大学学报(自然科学版)》 CAS 北大核心 2014年第5期477-480,共4页
研究了三级液固厌氧流化床微生物燃料电池(MFC)串并联的产电性能。同时考察了活性炭装填高度、阳极面积等因素对燃料电池产电性能的影响。结果表明:将燃料电池串联时,总电压为1 500mV,等于3个单级电池的电压之和,能够有效地提高燃料电... 研究了三级液固厌氧流化床微生物燃料电池(MFC)串并联的产电性能。同时考察了活性炭装填高度、阳极面积等因素对燃料电池产电性能的影响。结果表明:将燃料电池串联时,总电压为1 500mV,等于3个单级电池的电压之和,能够有效地提高燃料电池的输出电压,最大功率密度为0.28W·m-2。而并联时,输出电压仅为450mV左右,和单级电池输出电压大体相当,最大功率密度为0.074W·m-2。活性炭的装填高度增加1倍,电压升高了20%左右。阳极面积增加1倍,产电量增大了30%。 展开更多
关键词 厌氧流化床 微生物燃料电池 串并联 产电性能
下载PDF
厌氧流化床微生物燃料电池串联处理啤酒废水 被引量:1
7
作者 徐娜 刘新民 《山东化工》 CAS 2015年第9期181-185,共5页
在高650mm、有效容积1280m L的三级串联液固厌氧流化床单室无膜空气阴极微生物燃料电池(MFCs)中,研究了啤酒废水处理及产电性能。结果表明:串联后输出电压等于三个单级电池的电压之和,约为623.5m V,最大功率密度为0.340m W/m2。该体系... 在高650mm、有效容积1280m L的三级串联液固厌氧流化床单室无膜空气阴极微生物燃料电池(MFCs)中,研究了啤酒废水处理及产电性能。结果表明:串联后输出电压等于三个单级电池的电压之和,约为623.5m V,最大功率密度为0.340m W/m2。该体系内阻为21667Ω。恒温条件下(35℃),处理10天后,啤酒废水COD由初始的2025mg/L降至107.4mg/L,COD去除率达94.69%。通过液相色谱分析处理前后啤酒废水中的有机物质含量的结果可知,MFCs能够充分降解啤酒废水中的葡萄糖、木糖和乙酸等有机物质。 展开更多
关键词 厌氧流化床 微生物燃料电池 啤酒废水 串联
下载PDF
厌氧流化床微生物燃料电池研究进展
8
作者 宋杨凡 王鑫鑫 +2 位作者 朱楼 赵超 陈鸿伟 《化学与生物工程》 CAS 2021年第9期1-8,共8页
厌氧流化床微生物燃料电池采用液固流化床耦合微生物燃料电池技术,使流体与微生物载体颗粒充分混合,可显著提高相间传质效率,进而提升废水处理及电池产电效率。综述了厌氧流化床微生物燃料电池的工作原理及优缺点,分析了温度、pH值、外... 厌氧流化床微生物燃料电池采用液固流化床耦合微生物燃料电池技术,使流体与微生物载体颗粒充分混合,可显著提高相间传质效率,进而提升废水处理及电池产电效率。综述了厌氧流化床微生物燃料电池的工作原理及优缺点,分析了温度、pH值、外阻、电极、驯化方式、内阻、基质流速等因素对电池产电性能的影响,介绍了电池的应用前景,并对其未来主要的研究方向进行了展望。 展开更多
关键词 微生物燃料电池 厌氧流化床 废水处理 产电性能
下载PDF
阴极液及底物浓度对AFB-MFC同步废水处理及产电性能影响 被引量:4
9
作者 黄健盛 杨平 +2 位作者 郭勇 刘杨 苏媞 《环境工程学报》 CAS CSCD 北大核心 2012年第2期462-466,共5页
为了提高厌氧流化床微生物燃料电池(AFB-MFC)的性能,并为双室MFC寻找价廉、易得、无污染的阴极液,在曝气量16~24 L/h、温度(35±2)℃、回流量10.2 L/h、阴极底边距阴极室内底部17.3 cm、外电阻250Ω、水力停留时间(HRT)14.0~14.9 ... 为了提高厌氧流化床微生物燃料电池(AFB-MFC)的性能,并为双室MFC寻找价廉、易得、无污染的阴极液,在曝气量16~24 L/h、温度(35±2)℃、回流量10.2 L/h、阴极底边距阴极室内底部17.3 cm、外电阻250Ω、水力停留时间(HRT)14.0~14.9 h以及进水pH 7.81~8.37下,研究了阴极液及底物浓度对系统产电及废水处理性能的影响。结果表明,使用缓冲溶液、阳极室出水和自来水作阴极液时,自来水的产电性能最佳,阴极液种类不影响系统有机基质的去除。以自来水为阴极液时,阴极液pH及电导率随运行时间增加而增加,COD去除率为80.11%~89.29%,输出电压及功率密度开始随运行时间增加而增加,之后稳定在440~452 mV和48.40~51.08 mW/m2之间。增加底物浓度对COD去除率影响不大,而输出电压及功率密度随底物浓度增加而下降;底物COD浓度由3 307.09 mg/L增至9 520 mg/L时,COD去除率在85.77%~94.44%之间,输出电压及功率密度则分别由449 mV和50.40 mW/m2下降至406 mV和41.21 mW/m2。自来水作阴极液可避免二次污染及阴极液对阳极室微生物的影响,并得到高的产电能力。 展开更多
关键词 厌氧流化床微生物燃料电池 阴极液 产电 废水处理 底物
原文传递
厌氧流化床无膜微生物燃料电池的床层膨胀高度与产电特性 被引量:4
10
作者 岳学海 赵书菊 +1 位作者 王许云 郭庆杰 《过程工程学报》 CAS CSCD 北大核心 2011年第2期199-203,共5页
考察了厌氧流化床床层膨胀高度对电池不同阴极位置(阴极1,2,3分别位于分布板上方150,250,350mm)产电性能的影响.膨胀高度低于170mm时,电池功率随阴极位置沿轴向高度增加而减小,同一流速下,阴极1的最大电极输出功率最大,为347.1mW/m2.膨... 考察了厌氧流化床床层膨胀高度对电池不同阴极位置(阴极1,2,3分别位于分布板上方150,250,350mm)产电性能的影响.膨胀高度低于170mm时,电池功率随阴极位置沿轴向高度增加而减小,同一流速下,阴极1的最大电极输出功率最大,为347.1mW/m2.膨胀高度在170~270mm时,同一流速下,阴极2的最大产电功率高于阴极1和阴极3,当流速为8.35mm/s时,达361.0mW/m2.膨胀高度在400mm以下,同一流速下3处阴极的最大产电功率均降低,阴极3最大产电功率降低幅度较小,为297.5mW/m2,电池功率随阴极位置沿轴向高度增加而增大.该结果是流速对阳极室内传质及电子传递效率、流速对微生物膜生长双重影响的结果. 展开更多
关键词 微生物燃料电池 厌氧流化床 床层膨胀高度 功率密度 阴极位置
原文传递
厌氧流化床微生物燃料电池及其串并联性能 被引量:6
11
作者 宫本月 刘新民 郭庆杰 《环境工程学报》 CAS CSCD 北大核心 2014年第10期4527-4532,共6页
在高650 mm、有效容积1 280 mL的液固厌氧流化床单室无膜空气阴极微生物燃料电池(MFC)中,研究了燃料电池串并联产电和有机污水处理性能,同时考察了电极面积、活性炭装填体积、温度等因素对产电性能的影响。结果表明,将燃料电池串联,总... 在高650 mm、有效容积1 280 mL的液固厌氧流化床单室无膜空气阴极微生物燃料电池(MFC)中,研究了燃料电池串并联产电和有机污水处理性能,同时考察了电极面积、活性炭装填体积、温度等因素对产电性能的影响。结果表明,将燃料电池串联,总电压等于3个单级电池的电压之和,约为2 100 mV,最大功率为0.12 mW,而单级电池最大功率为0.05 mW。并联时,输出电压为800 mV,和单级电池输出电压大体相当,而电流为单级电流的2倍。阳极面积增加1倍,产电量增大了30%;电压随活性炭装填体积的增大而增大;温度为40℃时,燃料电池的产电性能最好。 展开更多
关键词 厌氧流化床 微生物燃料电池 串并联
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部