To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was...To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.展开更多
The oxidation ditch process is economic and efficient for wastewater treatment, but its application is limited in case where land is costly due to its large land area required. An innovative integrated oxidation ditch...The oxidation ditch process is economic and efficient for wastewater treatment, but its application is limited in case where land is costly due to its large land area required. An innovative integrated oxidation ditch with vertical circle(IODVC) system was developed to treat domestic and industrial wastewater aiming to save land area. The new system consists of a single channel divided into two ditches(the top one and the bottom one by a plate), a brush, and an innovative integral clarifier. Different from the horizontal circle of the conventional oxidation ditch, the flow of IODVC system recycles from the top zone to the bottom zone in the vertical circle as the brush is running, and then the IODVC saved land area required by about 50% compared with a conventional oxidation ditch with an intrachannel clarifier. The innovative integral clarifier is effective for separation of liquid and solids, and is preferably positioned at the opposite end of the brush in the ditch. It does not affect the hydrodynamic characteristics of the mixed liquor in the ditch, and the sludge can automatically return to the down ditch without any pump. In this study, experiments of domestic and dye wastewater treatment were carried out in bench scale and in full scale, respectively. Results clearly showed that the IODVC efficiently removed pollutants in the wastewaters, i.e., the average of COD removals for domestic and dye wastewater treatment were 95% and 90%, respectively, and that the IODVC process may provide a cost effective way for full scale dye wastewater treatment.展开更多
The standard three dimensional(3D) k-ε turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Compariso...The standard three dimensional(3D) k-ε turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.展开更多
Compared to conventional oxidation ditches, an integrated oxidation ditch with vertical circle (IODVC) has the characters of concise configuration, simple operation and maintenance, land saving and automatical sludg...Compared to conventional oxidation ditches, an integrated oxidation ditch with vertical circle (IODVC) has the characters of concise configuration, simple operation and maintenance, land saving and automatical sludge returning. By the utilization of vertical circulation, an aerobic zone and an anoxic zone can be unaffectedly formed in the IODVC. Therefore, COD and nitrogen can be efficiently removed. However, the removal efficiency of phosphorus was low in the IODVC. In the experiment described, a laboratory scale system to add an anaerobic column to the IODVC has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that the removal efficiency of TP with the anaerobic column was increased to 54.0% from 22.3% without the anaerobic column. After the acetic sodium was added into the influent as carbon sources, the mean TP removal efficency of 77. 5 % was obtained. At the same time, the mean removal efficiencies of COD, TN and NH3-N were 92.2%, 81.6% and 98.1%, respectively, at 12 h of HRT and 21-25 d of SRT. The optimal operational conditions in this study were as follows: recycle rate = 1.5-2.0, COD/TN 〉 6, COD/TP 〉 40, COD loading rate = 0.26-0.32 kgCOD/(kgSS· d), TN loading rate = 0. 028-0. 034 kgTN/( kgSS·d) and TP loading rate = 0.003-0.005 kgTP/(kgSS· d), respectively.展开更多
The oxidation ditch has been used for many years all over the world as an economic and efficient wastewater treatment technology. It can remove COD, nitrogen and a part of phosphorus efficiently. In the experiment des...The oxidation ditch has been used for many years all over the world as an economic and efficient wastewater treatment technology. It can remove COD, nitrogen and a part of phosphorus efficiently. In the experiment described, a pilot scale Pasveer oxidation ditch system has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that influent total phosphorus(TP) was removed for 35%-50%. After this, two anaerobic tanks with total volume of 11 m 3 were added to the system to release phosphorus. As a result, the TP removal efficiency increased by about 20%. At an anaerobic HRT of about 6 hours, a TP removal efficiency of 71% was achieved.展开更多
To enhance the nitrogen removal,a systemic monitoring of the biological and hydrological parameters of Carrousel oxidation ditch in Chongqing Jingkou Wastewater Treatment Plant was carried out to study the feasibility...To enhance the nitrogen removal,a systemic monitoring of the biological and hydrological parameters of Carrousel oxidation ditch in Chongqing Jingkou Wastewater Treatment Plant was carried out to study the feasibility of simultaneous nitrification and denitrification(SND).The variation and distribution of parameters such as flow velocity,concentration of dissolved oxygen(DO) and mixed liquor suspended solids(MLSS) in oxidation ditch were monitored and analyzed,which were major control factors for SND.The results showed that,the dimensional distribution of flow velocity,DO and MLSS were affected significantly by the operation condition of the aeration wheels.With all the four aeration wheels being in operation,DO and flow velocity were higher and the mixing of MLSS was sufficient.With three aeration wheels being in operation,the flow velocity in most of the bottom areas was enough to meet the basic requirements of no deposition,and the anaerobic region and aerobic region could exist simultaneously in one oxidation ditch,which was helpful to the process of SND.According to spatial distribution characteristics of the flow velocity,DO and soluble components under optimized condition,different functional zones of biochemical reaction in the Carrousel oxidation ditch system were defined,which might contribute to the optimization control and SND of Carrousel oxidation ditch.展开更多
A pilot-scale,pre-anoxic-anaerobic oxidation ditch was used in this study to treat municipal wastewater with limited carbon source.A novel return activated sludge(RAS) pre-concentration tank was adopted for improv-ing...A pilot-scale,pre-anoxic-anaerobic oxidation ditch was used in this study to treat municipal wastewater with limited carbon source.A novel return activated sludge(RAS) pre-concentration tank was adopted for improv-ing the phosphorus removal efficiency and the effects of RAS pre-concentration ratio were studied.Under the opti-mal operational condition,the suspended total phosphorus(STP) and the total phosphorus(TP) removal efficiencies were around 58.9% and 63.9% respectively and the effluent-P was lower than 0.8 mg·L-1.The reason is that with the optimal RAS pre-concentration ratio,nitrate is completely removed with endogenous carbon source and the secondary phosphorus release is strictly restrained in the pre-anoxic tank.Therefore,the anaerobic phosphorus release and the carbon source uptake by phosphorus accumulation organisms(PAOs) in the sludge,which are ex-tremely important to the phosphorus removal process,can be fully satisfied.Furthermore,the oxidation-reduction potential is proved to be suitable for controlling the RAS pre-concentration ratio due to influent fluctuation and varied conditions.The novel modified system is also beneficial for PAO accumulation.展开更多
The oxidation ditch system in Handan WWTP is the biggest triple oxidation ditch system (T O.D.) treating municipal wastewater in China with a service population of 350000. The system can perform three functions, aer...The oxidation ditch system in Handan WWTP is the biggest triple oxidation ditch system (T O.D.) treating municipal wastewater in China with a service population of 350000. The system can perform three functions, aerobic, anoxic and precipitation process in different ditch by alternating the operation mode, and the simultaneous removal of nitrogen and organic substances can be attained. Statistic analysis of data from past five year operation in the WWTP was presented, and investigations on COD, nitrogen, phosphorus removal in system were carried out in the field. The optimum number of aerated brush to meet satisfied nitrification and denitrification was determined on basis of field experiment. The effluent is reused as cooling water for a electricity power plant, and excess sludge is utilized as fertilizer. The concept of an ecological WWTP is put forward by the example of Handan WWTP.展开更多
The submerged propeller is an efficient diving mix device,which is applicable for oxidation ditch treatment in industry,city and village wastewater-treatment plant. The impeller structure and reasonable rotating speed...The submerged propeller is an efficient diving mix device,which is applicable for oxidation ditch treatment in industry,city and village wastewater-treatment plant. The impeller structure and reasonable rotating speed are important factors that determine flow field distribution and energy conversion efficiency. So it is necessary to use modern design methods to develop new kinds of high efficiency submerged propellers,and research the flow field characteristics of submerged propellers. On the basis of the existing form drawing,three-dimensional model of submerged propellers and unstructured tetrahedral mesh were generated. Based on Navier- Stokes equations and standard k- ε turbulence model,the flow was simulated by using a simple algorithm. Through changing some design parameters of propellers,the corresponding numerical simulation results reveal that for the same impeller diameter and service area of submerged propellers,the power consumption could be reduced effectively by optimizing blade mounting angle,which can determine the best blade mounting angle and most suitable rotational speed under given conditions. The study can provide theoretical and project guidance for submerged propellers design.展开更多
A model for liquid-gas flow (MLGF), considering the flee movement of liquid surface, was built to simulate the wastewater velocity field and gas distribution in a full-scale Caroussel oxidation ditch with surface ae...A model for liquid-gas flow (MLGF), considering the flee movement of liquid surface, was built to simulate the wastewater velocity field and gas distribution in a full-scale Caroussel oxidation ditch with surface aeration. It was calibrated and validated by field measurement data, and the calibrated parameters and sections were selected based on both model analysis and numerical computation. The simulated velocities of MLGF were compared to that of a model for wastewater-sludge flow (MWSF). The results show that the free liquid surface considered in MLGF improves the simulated velocity results of upper layer and surface. Moreover, distribution of gas volume fraction (GVF) simulated by MLGF was compared to dissolved oxygen (DO) measured in the oxidation ditch. It is shown that DO distribution is affected by many factors besides GVF distribution.展开更多
In order to enhance efficiency of the nitrogen and phosphorus removal of sewage treatment plant, Taking Wu Long kou sewage treatment plant project in Zhengzhou as an example, this article introduces the structure, the...In order to enhance efficiency of the nitrogen and phosphorus removal of sewage treatment plant, Taking Wu Long kou sewage treatment plant project in Zhengzhou as an example, this article introduces the structure, the working principle, the craft character, as well as the problems existed in the practical application of the improved oxidation ditch, and raises some corresponding processing countermeasures. Looked from the running situation of Wu Long kou sewage treatment plant, the improved oxidation ditch have certain advantages in city sewage treatment, such as high organic removing efficiency, good removing effect of nitrogen and phosphorus, low investing expenses and operating cost and so on. It is a craft that is worth promoting in urban sewage treatment.展开更多
文摘To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.
文摘The oxidation ditch process is economic and efficient for wastewater treatment, but its application is limited in case where land is costly due to its large land area required. An innovative integrated oxidation ditch with vertical circle(IODVC) system was developed to treat domestic and industrial wastewater aiming to save land area. The new system consists of a single channel divided into two ditches(the top one and the bottom one by a plate), a brush, and an innovative integral clarifier. Different from the horizontal circle of the conventional oxidation ditch, the flow of IODVC system recycles from the top zone to the bottom zone in the vertical circle as the brush is running, and then the IODVC saved land area required by about 50% compared with a conventional oxidation ditch with an intrachannel clarifier. The innovative integral clarifier is effective for separation of liquid and solids, and is preferably positioned at the opposite end of the brush in the ditch. It does not affect the hydrodynamic characteristics of the mixed liquor in the ditch, and the sludge can automatically return to the down ditch without any pump. In this study, experiments of domestic and dye wastewater treatment were carried out in bench scale and in full scale, respectively. Results clearly showed that the IODVC efficiently removed pollutants in the wastewaters, i.e., the average of COD removals for domestic and dye wastewater treatment were 95% and 90%, respectively, and that the IODVC process may provide a cost effective way for full scale dye wastewater treatment.
基金The Specialized Research Fund for the Doctoral Programof Higher Education(No.20010610023) and the Sino-Finnish Scientific and TechnologicalCooperation Program
文摘The standard three dimensional(3D) k-ε turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.
文摘Compared to conventional oxidation ditches, an integrated oxidation ditch with vertical circle (IODVC) has the characters of concise configuration, simple operation and maintenance, land saving and automatical sludge returning. By the utilization of vertical circulation, an aerobic zone and an anoxic zone can be unaffectedly formed in the IODVC. Therefore, COD and nitrogen can be efficiently removed. However, the removal efficiency of phosphorus was low in the IODVC. In the experiment described, a laboratory scale system to add an anaerobic column to the IODVC has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that the removal efficiency of TP with the anaerobic column was increased to 54.0% from 22.3% without the anaerobic column. After the acetic sodium was added into the influent as carbon sources, the mean TP removal efficency of 77. 5 % was obtained. At the same time, the mean removal efficiencies of COD, TN and NH3-N were 92.2%, 81.6% and 98.1%, respectively, at 12 h of HRT and 21-25 d of SRT. The optimal operational conditions in this study were as follows: recycle rate = 1.5-2.0, COD/TN 〉 6, COD/TP 〉 40, COD loading rate = 0.26-0.32 kgCOD/(kgSS· d), TN loading rate = 0. 028-0. 034 kgTN/( kgSS·d) and TP loading rate = 0.003-0.005 kgTP/(kgSS· d), respectively.
文摘The oxidation ditch has been used for many years all over the world as an economic and efficient wastewater treatment technology. It can remove COD, nitrogen and a part of phosphorus efficiently. In the experiment described, a pilot scale Pasveer oxidation ditch system has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that influent total phosphorus(TP) was removed for 35%-50%. After this, two anaerobic tanks with total volume of 11 m 3 were added to the system to release phosphorus. As a result, the TP removal efficiency increased by about 20%. At an anaerobic HRT of about 6 hours, a TP removal efficiency of 71% was achieved.
基金Project(2009ZX07315-002-01) supported by the Water Pollution Control and Management of Major Special Science and Technology, China Project(CDJXS11210001) supported by the Scientific and Technical Innovation Project of Chongqing University Graduation Foundation, China
文摘To enhance the nitrogen removal,a systemic monitoring of the biological and hydrological parameters of Carrousel oxidation ditch in Chongqing Jingkou Wastewater Treatment Plant was carried out to study the feasibility of simultaneous nitrification and denitrification(SND).The variation and distribution of parameters such as flow velocity,concentration of dissolved oxygen(DO) and mixed liquor suspended solids(MLSS) in oxidation ditch were monitored and analyzed,which were major control factors for SND.The results showed that,the dimensional distribution of flow velocity,DO and MLSS were affected significantly by the operation condition of the aeration wheels.With all the four aeration wheels being in operation,DO and flow velocity were higher and the mixing of MLSS was sufficient.With three aeration wheels being in operation,the flow velocity in most of the bottom areas was enough to meet the basic requirements of no deposition,and the anaerobic region and aerobic region could exist simultaneously in one oxidation ditch,which was helpful to the process of SND.According to spatial distribution characteristics of the flow velocity,DO and soluble components under optimized condition,different functional zones of biochemical reaction in the Carrousel oxidation ditch system were defined,which might contribute to the optimization control and SND of Carrousel oxidation ditch.
基金Supported by the Major Science and Technology Program for Water Pollution Control and Treatment (2008ZX07316)
文摘A pilot-scale,pre-anoxic-anaerobic oxidation ditch was used in this study to treat municipal wastewater with limited carbon source.A novel return activated sludge(RAS) pre-concentration tank was adopted for improv-ing the phosphorus removal efficiency and the effects of RAS pre-concentration ratio were studied.Under the opti-mal operational condition,the suspended total phosphorus(STP) and the total phosphorus(TP) removal efficiencies were around 58.9% and 63.9% respectively and the effluent-P was lower than 0.8 mg·L-1.The reason is that with the optimal RAS pre-concentration ratio,nitrate is completely removed with endogenous carbon source and the secondary phosphorus release is strictly restrained in the pre-anoxic tank.Therefore,the anaerobic phosphorus release and the carbon source uptake by phosphorus accumulation organisms(PAOs) in the sludge,which are ex-tremely important to the phosphorus removal process,can be fully satisfied.Furthermore,the oxidation-reduction potential is proved to be suitable for controlling the RAS pre-concentration ratio due to influent fluctuation and varied conditions.The novel modified system is also beneficial for PAO accumulation.
文摘The oxidation ditch system in Handan WWTP is the biggest triple oxidation ditch system (T O.D.) treating municipal wastewater in China with a service population of 350000. The system can perform three functions, aerobic, anoxic and precipitation process in different ditch by alternating the operation mode, and the simultaneous removal of nitrogen and organic substances can be attained. Statistic analysis of data from past five year operation in the WWTP was presented, and investigations on COD, nitrogen, phosphorus removal in system were carried out in the field. The optimum number of aerated brush to meet satisfied nitrification and denitrification was determined on basis of field experiment. The effluent is reused as cooling water for a electricity power plant, and excess sludge is utilized as fertilizer. The concept of an ecological WWTP is put forward by the example of Handan WWTP.
基金The support of College of Energy and Electrical Engineering,Hohai University,ChinaNational Natural Science Foundation of China ( No.51106042)
文摘The submerged propeller is an efficient diving mix device,which is applicable for oxidation ditch treatment in industry,city and village wastewater-treatment plant. The impeller structure and reasonable rotating speed are important factors that determine flow field distribution and energy conversion efficiency. So it is necessary to use modern design methods to develop new kinds of high efficiency submerged propellers,and research the flow field characteristics of submerged propellers. On the basis of the existing form drawing,three-dimensional model of submerged propellers and unstructured tetrahedral mesh were generated. Based on Navier- Stokes equations and standard k- ε turbulence model,the flow was simulated by using a simple algorithm. Through changing some design parameters of propellers,the corresponding numerical simulation results reveal that for the same impeller diameter and service area of submerged propellers,the power consumption could be reduced effectively by optimizing blade mounting angle,which can determine the best blade mounting angle and most suitable rotational speed under given conditions. The study can provide theoretical and project guidance for submerged propellers design.
基金Project supported by Visiting Scholar Foundation of Key Laboratory of the Resources Exploitation and Environmental Disaster Control Engineering in Southwest China (Chongqing University),Ministry of Education,China
文摘A model for liquid-gas flow (MLGF), considering the flee movement of liquid surface, was built to simulate the wastewater velocity field and gas distribution in a full-scale Caroussel oxidation ditch with surface aeration. It was calibrated and validated by field measurement data, and the calibrated parameters and sections were selected based on both model analysis and numerical computation. The simulated velocities of MLGF were compared to that of a model for wastewater-sludge flow (MWSF). The results show that the free liquid surface considered in MLGF improves the simulated velocity results of upper layer and surface. Moreover, distribution of gas volume fraction (GVF) simulated by MLGF was compared to dissolved oxygen (DO) measured in the oxidation ditch. It is shown that DO distribution is affected by many factors besides GVF distribution.
文摘In order to enhance efficiency of the nitrogen and phosphorus removal of sewage treatment plant, Taking Wu Long kou sewage treatment plant project in Zhengzhou as an example, this article introduces the structure, the working principle, the craft character, as well as the problems existed in the practical application of the improved oxidation ditch, and raises some corresponding processing countermeasures. Looked from the running situation of Wu Long kou sewage treatment plant, the improved oxidation ditch have certain advantages in city sewage treatment, such as high organic removing efficiency, good removing effect of nitrogen and phosphorus, low investing expenses and operating cost and so on. It is a craft that is worth promoting in urban sewage treatment.