The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic int...The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic interpretations and analog modeling are presented to construct the suprasalt and subsalt structures in the transfer zone of the middle Kuqa and investigate the influence of the two salt layers.The results reveal that the relationship of the two salt layers changes from separated to connected,and then overlapped toward the foreland in the transfer zone.Different structural models are formed in the suprasalt and subsalt units due to the interaction of the two salt layers.The imbricate thrust faults form two broom-like fault systems in the subsalt units.The suprasalt units develop detached folds terminating toward the east in the region near the orogenic belt.Whereas,two offset anticlines with different trends develop at the frontal edge of the lower salt layer and the trailing edge of the upper salt layer,respectively.According to exploration results in this region,the relationship between suprasalt and subsalt structures has an influence on hydrocarbon accumulation.We believe that the connected deformation contains high-risk plays while the decoupled deformation contains well-preserved plays.展开更多
Water–sand flow triggered by rainfall is the dominant mechanism for instability and failure of sand slopes. To further analyze the stability state of sand on a slope under different rainfall conditions, the initiatio...Water–sand flow triggered by rainfall is the dominant mechanism for instability and failure of sand slopes. To further analyze the stability state of sand on a slope under different rainfall conditions, the initiation conditions and flow characteristics of water–sand flows are studied. Based on the theory of equilibrium forces and hydrological dynamics, a 1:100-scale analog model is built and verified with field observation data. The results indicate three dynamic stabilization stages of the sand slope under different weather conditions: dry sand, wet sand, and water–sand flow. Water–sand flows are triggered easilyunder short duration and heavy rainfall conditions. The rainfall threshold required to initiate water–sand flow is 4.14 mm/h. Rainfall amount and duration required to initiate water–sand flow decrease with fine sand content increasing. A sand head that develops at the front of the water–sand flow results in a flow along the edge of the sand debris flow and a ‘‘tree root’’ flow morphology. Modelingresults are consistent with theoretical analysis and field observations.展开更多
Pull-apart basins are faulting and folding zones with high intensity of fractures that strongly affect the production in unconventional shale gas. While most observations of pull-apart basins were from surface mapping...Pull-apart basins are faulting and folding zones with high intensity of fractures that strongly affect the production in unconventional shale gas. While most observations of pull-apart basins were from surface mapping or laboratory experiments, we investigated a nascent pull-apart basin in the subsurface. We characterized a nascent pull-apart basin along the strike-slip fault within the Woodford Shale by using seismic attributes analyses, including coherence, dip-azimuth, and curvature. The results indicate a 32 km long, N-S striking strike-slip fault that displays a distinct but young pull-apart basin, which is ~1.6 km by 3.2 km in size and is bounded by two quasi-circular faults. The curvature attribute map reveals two quasi-circular folds, which depart from the main strike-slip fault at ~25°, resulting in an elliptical basin. Inside the basin, a series of echelon quasi-circular normal faults step into the bottom of the basin with ~80 m of total subsidence. We propose that the controls of the shape of pull-apart basin are the brittleness of the shale, and we suggest proper seismic attributes as a useful tool for investigating high fracture intensity in the subsurface for hydrofracturing and horizontal drilling within the shale.展开更多
Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band ...Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band gaps of the ternary locally resonant phononic crystals. The parameters of the models are given in a reasonable way based on the physical insight into the band gap mechanism. Both the lumped-mass methods and our models are used in the study of the influences of structural and the material parameters on frequencies on both edges of the lowest gaps in the ternary locally resonant phononic crystals. The analytical evaluations with our models and the theoretical predictions with the lumped-mass method are in good agreement with each other. The newly proposed heuristic models are helpful for a better understanding of the locally resonant band gap mechanism, as well as more accurate evaluation of the band edge frequencies.展开更多
-The formulation of ring analogy method for the prediction of static strength (ductile collapse) of tubular T, X joints under axial compression based on the limit analysis of the ring with some assumptions is presente...-The formulation of ring analogy method for the prediction of static strength (ductile collapse) of tubular T, X joints under axial compression based on the limit analysis of the ring with some assumptions is presented in this papaer. The regression formula for the effective length of the chord based on test results is established by means of the least square method. The results computed by the present semi-analytic formula are compared with previous results and test data. They are quite close to each other. The accuracy of the present formula depends on the reasonable selection of the effective length of the chord, which requires numerous test data.展开更多
<em>Objective</em>: In order to take a decision about the revascularization approach to be adopted, it is of fundamental importance to determine whether coronary artery stenoses induce ischemia or not. An ...<em>Objective</em>: In order to take a decision about the revascularization approach to be adopted, it is of fundamental importance to determine whether coronary artery stenoses induce ischemia or not. An index, named (Fractional Flow Reserve), based on pressure measurements has been proposed to this aim and is usually interpreted in terms of flows. The objective of this work is to compute simultaneously pressures and flow rates in the coronary network of patients with three-vessel disease, in order to study more precisely the relationship between these two quantities. <em>Approach</em>: 22 patients have been included in the study. Some pressure and flow rate measurements were collected during by-pass surgery. These clinical data allow determining parameters for a patient’s specific model, based on the electric/hydraulic analogy. Collateral pathways are included in the model, as well as the severity of the disease and the impact of revascularization. <em>Main Results</em>: For patients with stenoses on LAD, LCx, LMCA and occlusion of the RCA, the flow rate delivered to the right territory is of course a function of the aortic pressure, the left stenoses severity, and the pressure distal to the thrombosis. But it mainly depends on the capillary and collateral resistances, and on the proportion between them. Abnormal microvascular hemodynamics, may be present in patients with non-hemodynamic significant lesions as assessed by the pressure ratio. Complete revascularization with the 3 grafts is demonstrated to be fully justified. The direction of collateral flows may be reversed, depending on the pressure gradient. In any case, they remain low and become negligible when the 3 grafts are operating. <em>Significance</em>: Surgical decision based only on pressure measurements may miss some real hemodynamic problems due to the considered stenosis. This risk is even greater in case of serial stenoses.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41572187,41972219,41927802 and 42072320)the China Postdoctoral Science Foundation(Grant No.2020M671432)。
文摘The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic interpretations and analog modeling are presented to construct the suprasalt and subsalt structures in the transfer zone of the middle Kuqa and investigate the influence of the two salt layers.The results reveal that the relationship of the two salt layers changes from separated to connected,and then overlapped toward the foreland in the transfer zone.Different structural models are formed in the suprasalt and subsalt units due to the interaction of the two salt layers.The imbricate thrust faults form two broom-like fault systems in the subsalt units.The suprasalt units develop detached folds terminating toward the east in the region near the orogenic belt.Whereas,two offset anticlines with different trends develop at the frontal edge of the lower salt layer and the trailing edge of the upper salt layer,respectively.According to exploration results in this region,the relationship between suprasalt and subsalt structures has an influence on hydrocarbon accumulation.We believe that the connected deformation contains high-risk plays while the decoupled deformation contains well-preserved plays.
基金supported by the National Natural Science Foundation of China (NSFC) (Grants Nos. 41662020 and 41462012)
文摘Water–sand flow triggered by rainfall is the dominant mechanism for instability and failure of sand slopes. To further analyze the stability state of sand on a slope under different rainfall conditions, the initiation conditions and flow characteristics of water–sand flows are studied. Based on the theory of equilibrium forces and hydrological dynamics, a 1:100-scale analog model is built and verified with field observation data. The results indicate three dynamic stabilization stages of the sand slope under different weather conditions: dry sand, wet sand, and water–sand flow. Water–sand flows are triggered easilyunder short duration and heavy rainfall conditions. The rainfall threshold required to initiate water–sand flow is 4.14 mm/h. Rainfall amount and duration required to initiate water–sand flow decrease with fine sand content increasing. A sand head that develops at the front of the water–sand flow results in a flow along the edge of the sand debris flow and a ‘‘tree root’’ flow morphology. Modelingresults are consistent with theoretical analysis and field observations.
文摘Pull-apart basins are faulting and folding zones with high intensity of fractures that strongly affect the production in unconventional shale gas. While most observations of pull-apart basins were from surface mapping or laboratory experiments, we investigated a nascent pull-apart basin in the subsurface. We characterized a nascent pull-apart basin along the strike-slip fault within the Woodford Shale by using seismic attributes analyses, including coherence, dip-azimuth, and curvature. The results indicate a 32 km long, N-S striking strike-slip fault that displays a distinct but young pull-apart basin, which is ~1.6 km by 3.2 km in size and is bounded by two quasi-circular faults. The curvature attribute map reveals two quasi-circular folds, which depart from the main strike-slip fault at ~25°, resulting in an elliptical basin. Inside the basin, a series of echelon quasi-circular normal faults step into the bottom of the basin with ~80 m of total subsidence. We propose that the controls of the shape of pull-apart basin are the brittleness of the shale, and we suggest proper seismic attributes as a useful tool for investigating high fracture intensity in the subsurface for hydrofracturing and horizontal drilling within the shale.
基金Project supported by the National Natural Science Foundation of China (Grant No 50575222) and the State Key Development Program for Basic Research of China (Grant No 51307).
文摘Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band gaps of the ternary locally resonant phononic crystals. The parameters of the models are given in a reasonable way based on the physical insight into the band gap mechanism. Both the lumped-mass methods and our models are used in the study of the influences of structural and the material parameters on frequencies on both edges of the lowest gaps in the ternary locally resonant phononic crystals. The analytical evaluations with our models and the theoretical predictions with the lumped-mass method are in good agreement with each other. The newly proposed heuristic models are helpful for a better understanding of the locally resonant band gap mechanism, as well as more accurate evaluation of the band edge frequencies.
文摘-The formulation of ring analogy method for the prediction of static strength (ductile collapse) of tubular T, X joints under axial compression based on the limit analysis of the ring with some assumptions is presented in this papaer. The regression formula for the effective length of the chord based on test results is established by means of the least square method. The results computed by the present semi-analytic formula are compared with previous results and test data. They are quite close to each other. The accuracy of the present formula depends on the reasonable selection of the effective length of the chord, which requires numerous test data.
文摘<em>Objective</em>: In order to take a decision about the revascularization approach to be adopted, it is of fundamental importance to determine whether coronary artery stenoses induce ischemia or not. An index, named (Fractional Flow Reserve), based on pressure measurements has been proposed to this aim and is usually interpreted in terms of flows. The objective of this work is to compute simultaneously pressures and flow rates in the coronary network of patients with three-vessel disease, in order to study more precisely the relationship between these two quantities. <em>Approach</em>: 22 patients have been included in the study. Some pressure and flow rate measurements were collected during by-pass surgery. These clinical data allow determining parameters for a patient’s specific model, based on the electric/hydraulic analogy. Collateral pathways are included in the model, as well as the severity of the disease and the impact of revascularization. <em>Main Results</em>: For patients with stenoses on LAD, LCx, LMCA and occlusion of the RCA, the flow rate delivered to the right territory is of course a function of the aortic pressure, the left stenoses severity, and the pressure distal to the thrombosis. But it mainly depends on the capillary and collateral resistances, and on the proportion between them. Abnormal microvascular hemodynamics, may be present in patients with non-hemodynamic significant lesions as assessed by the pressure ratio. Complete revascularization with the 3 grafts is demonstrated to be fully justified. The direction of collateral flows may be reversed, depending on the pressure gradient. In any case, they remain low and become negligible when the 3 grafts are operating. <em>Significance</em>: Surgical decision based only on pressure measurements may miss some real hemodynamic problems due to the considered stenosis. This risk is even greater in case of serial stenoses.