Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information w...Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information with the assistance of a relay node under interference power constraints.In order to enhance the transmit rate and maintain fairness between two source terminals,a practical 2-phase analog network coding protocol is adopted and its optimal power allocation algorithm is proposed.Numerical results verify the superiority of the proposed algorithm over the conventional direct transmission protocol and 4-phase amplify-and-forward relay protocol.展开更多
Network coding (NC), which works in the network layer, is an effective technology to improve the network throughput, by allowing the relay to encode the information from different users and ensuring the destination to...Network coding (NC), which works in the network layer, is an effective technology to improve the network throughput, by allowing the relay to encode the information from different users and ensuring the destination to retrieve the desired information. Employing network coding technique in a cooperative network can improve the network performance further. In this paper, we introduce analog network coding (ANC) to a simple two-user cooperative diversity network, which adopts amplify-and-forward (AF) mode and all nodes use multiple antennas. The impact of the number of antenna on the system achievable rate is investigated. And the bit error rate (BER) performances of the traditional relay cooperative network and the cooperative network based on analog network coding under different propagation conditions are discussed. The simulation results show that the performance of the traditional cooperative network has improved significantly due to the employ of network coding.展开更多
Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit feature...Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently. The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency. A fault diagnosis illustration validated this method.展开更多
One kind of steepest descent incremental projection learning algorithm for improving the training of radial basis function(RBF)neural network is proposed,which is applied to analog circuit fault isolation.This algorit...One kind of steepest descent incremental projection learning algorithm for improving the training of radial basis function(RBF)neural network is proposed,which is applied to analog circuit fault isolation.This algorithm simplified the structure of network through optimum output layer coefficient with incremental projection learning(IPL)algorithm,and adjusted the parameters of the neural activation function to control the network scale and improve the network approximation ability.Compared to the traditional algorithm,the improved algorithm has quicker convergence rate and higher isolation precision.Simulation results show that this improved RBF network has much better performance,which can be used in analog circuit fault isolation field.展开更多
A new method for analyzing the stabilities of analog electronic neural networks ispresented.The energy functions with clear physical meaning are derived by introducing the staticequivalent circuit models,which has exp...A new method for analyzing the stabilities of analog electronic neural networks ispresented.The energy functions with clear physical meaning are derived by introducing the staticequivalent circuit models,which has expanded the Tellegen Theorem for application on circuitanalysis.The method used to derive the energy functions of nets from first order differentialequations is valid for all first order continuous autonomous systems.The stability analysis ofcellular neural networks is made by the use of the stationary cocontent theorem.Some resultsare instructive for the network implementation on circuits.展开更多
At the present time, numerical models (such as, numerical simulation based on FEM) adopted broadly in technological design and process control in forging field can not implement the realtime control of material form...At the present time, numerical models (such as, numerical simulation based on FEM) adopted broadly in technological design and process control in forging field can not implement the realtime control of material forming process. It is thus necessary to establish a dynamic model fitting for the real-time control of material deformation processing in order to increase production efficiency, improve forging qualities and increase yields. In this paper, hot deformation behaviors of FGH96 superalloy are characterized by using hot compressive simulation experiments. The artificial neural network (ANN) model of FGH96 superalloy during hot deformation is established by using back propagation (BP) network. Then according to electrical analogy theory, its analog-circuit (AC) model is obtained through mapping the ANN model into analog circuit. Testing results show that the ANN model and the AC model of FGH96 superalloy hot deformation behaviors possess high predictive precisions and can well describe the superalloy's dynamic flow behaviors. The ideas proposed in this paper can be applied in the real-time control of material deformation processing.展开更多
In order to improve the speed and accuracy of analog circuit fault diagnosis,using Back Propagation Neural Network(BPNN),a new method is proposed based on Particle Swarm Optimization(PSO)to adjust weights of BP neural...In order to improve the speed and accuracy of analog circuit fault diagnosis,using Back Propagation Neural Network(BPNN),a new method is proposed based on Particle Swarm Optimization(PSO)to adjust weights of BP neural network.The model can not only overcome the limitations of the slow convergence and the local extreme values by basic BP algorithm,but also improve the learning ability and generalization ability with a higher precision.The response signals of analog circuit is preprocessed by Wavelet Packet Transform(WPT)as the fault feature.The simulation result shows that the proposed method has higher diagnostic accuracy and faster convergence speed,which is effective for fault location.展开更多
The features of the floating gate devices as analog memory have been investigatedexperimentally.Programming properties of the devices,compatibility and endurance of program-ming,and programming methods are presented i...The features of the floating gate devices as analog memory have been investigatedexperimentally.Programming properties of the devices,compatibility and endurance of program-ming,and programming methods are presented in this paper.The results illustrate that thedevice can be used to store the analog weights for the neural networks,and the method that thestored value is adjusted continuously to approach to a given analog values is a rather practicalmethod for storing weights of neural networks.展开更多
Digital circuit and analog circuit courses are basic courses for students of science and engineering universities. Among them,the practical courses are of great significance for students to master the knowledge of ele...Digital circuit and analog circuit courses are basic courses for students of science and engineering universities. Among them,the practical courses are of great significance for students to master the knowledge of electronics. In order to make teachers teaching more efficiently and students studying more quickly,how to update the experimental course in teaching reform is the key point. This paper analyzing the present situation of teaching in the digital circuit and analog circuit courses,the teaching questions in universities. On the basis of it,the innovation measures of experimental teaching methods and contents are discussed. Our school tries to introduce the UltraLab network experiment platform,reform and optimize the teaching methods of related courses.And it’ s accelerating the construction and development of emerging engineering education’ s process,reducing effectively the teacher’s time for managing in equipment,improving the students’ ability to use instruments.展开更多
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of...Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.展开更多
Reasons and realities such as being non-linear of dynamical equations,being lightweight and unstable nature of quadrotor,along with internal and external disturbances and parametric uncertainties,have caused that the ...Reasons and realities such as being non-linear of dynamical equations,being lightweight and unstable nature of quadrotor,along with internal and external disturbances and parametric uncertainties,have caused that the controller design for these quadrotors is considered the challenging issue of the day.In this work,an adaptive sliding mode controller based on neural network is proposed to control the altitude of a quadrotor.The error and error derivative of the altitude of a quadrotor are the inputs of neural network and altitude sliding surface variable is its output.Neural network estimates the sliding surface variable adaptively according to the conditions of quadrotor and sets the altitude of a quadrotor equal to the desired value.The proposed controller stability has been proven by Lyapunov theory and it is shown that all system states reach to sliding surface and are remaining in it.The superiority of the proposed control method has been proven by comparison and simulation results.展开更多
基金Acknowledgements The work was supported by National Natural Science Foundation of China (Grant No.60972008). The corresponding author is Jiang Wei.
文摘Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information with the assistance of a relay node under interference power constraints.In order to enhance the transmit rate and maintain fairness between two source terminals,a practical 2-phase analog network coding protocol is adopted and its optimal power allocation algorithm is proposed.Numerical results verify the superiority of the proposed algorithm over the conventional direct transmission protocol and 4-phase amplify-and-forward relay protocol.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 60872016)
文摘Network coding (NC), which works in the network layer, is an effective technology to improve the network throughput, by allowing the relay to encode the information from different users and ensuring the destination to retrieve the desired information. Employing network coding technique in a cooperative network can improve the network performance further. In this paper, we introduce analog network coding (ANC) to a simple two-user cooperative diversity network, which adopts amplify-and-forward (AF) mode and all nodes use multiple antennas. The impact of the number of antenna on the system achievable rate is investigated. And the bit error rate (BER) performances of the traditional relay cooperative network and the cooperative network based on analog network coding under different propagation conditions are discussed. The simulation results show that the performance of the traditional cooperative network has improved significantly due to the employ of network coding.
基金the National Natural Science Fundation of China (60372001 90407007)the Ph. D. Programs Foundation of Ministry of Education of China (20030614006).
文摘Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently. The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency. A fault diagnosis illustration validated this method.
基金Pre-research Projects Fund of the National Ar ming Department,the 11th Five-year Projects
文摘One kind of steepest descent incremental projection learning algorithm for improving the training of radial basis function(RBF)neural network is proposed,which is applied to analog circuit fault isolation.This algorithm simplified the structure of network through optimum output layer coefficient with incremental projection learning(IPL)algorithm,and adjusted the parameters of the neural activation function to control the network scale and improve the network approximation ability.Compared to the traditional algorithm,the improved algorithm has quicker convergence rate and higher isolation precision.Simulation results show that this improved RBF network has much better performance,which can be used in analog circuit fault isolation field.
文摘A new method for analyzing the stabilities of analog electronic neural networks ispresented.The energy functions with clear physical meaning are derived by introducing the staticequivalent circuit models,which has expanded the Tellegen Theorem for application on circuitanalysis.The method used to derive the energy functions of nets from first order differentialequations is valid for all first order continuous autonomous systems.The stability analysis ofcellular neural networks is made by the use of the stationary cocontent theorem.Some resultsare instructive for the network implementation on circuits.
文摘At the present time, numerical models (such as, numerical simulation based on FEM) adopted broadly in technological design and process control in forging field can not implement the realtime control of material forming process. It is thus necessary to establish a dynamic model fitting for the real-time control of material deformation processing in order to increase production efficiency, improve forging qualities and increase yields. In this paper, hot deformation behaviors of FGH96 superalloy are characterized by using hot compressive simulation experiments. The artificial neural network (ANN) model of FGH96 superalloy during hot deformation is established by using back propagation (BP) network. Then according to electrical analogy theory, its analog-circuit (AC) model is obtained through mapping the ANN model into analog circuit. Testing results show that the ANN model and the AC model of FGH96 superalloy hot deformation behaviors possess high predictive precisions and can well describe the superalloy's dynamic flow behaviors. The ideas proposed in this paper can be applied in the real-time control of material deformation processing.
基金supported the Science and Technology Research Project of Liaoning Provincial Department of Education
文摘In order to improve the speed and accuracy of analog circuit fault diagnosis,using Back Propagation Neural Network(BPNN),a new method is proposed based on Particle Swarm Optimization(PSO)to adjust weights of BP neural network.The model can not only overcome the limitations of the slow convergence and the local extreme values by basic BP algorithm,but also improve the learning ability and generalization ability with a higher precision.The response signals of analog circuit is preprocessed by Wavelet Packet Transform(WPT)as the fault feature.The simulation result shows that the proposed method has higher diagnostic accuracy and faster convergence speed,which is effective for fault location.
文摘The features of the floating gate devices as analog memory have been investigatedexperimentally.Programming properties of the devices,compatibility and endurance of program-ming,and programming methods are presented in this paper.The results illustrate that thedevice can be used to store the analog weights for the neural networks,and the method that thestored value is adjusted continuously to approach to a given analog values is a rather practicalmethod for storing weights of neural networks.
基金supported by University-level Teaching Reform Project of New Engineering,Beijing University of Chemical Technology(xgk2017040436)Teaching Reform Project of School of International Teaching,Beijing University of Chemical Technology(siejg201713)
文摘Digital circuit and analog circuit courses are basic courses for students of science and engineering universities. Among them,the practical courses are of great significance for students to master the knowledge of electronics. In order to make teachers teaching more efficiently and students studying more quickly,how to update the experimental course in teaching reform is the key point. This paper analyzing the present situation of teaching in the digital circuit and analog circuit courses,the teaching questions in universities. On the basis of it,the innovation measures of experimental teaching methods and contents are discussed. Our school tries to introduce the UltraLab network experiment platform,reform and optimize the teaching methods of related courses.And it’ s accelerating the construction and development of emerging engineering education’ s process,reducing effectively the teacher’s time for managing in equipment,improving the students’ ability to use instruments.
基金National Natural Science Foundation of China(No.61371024)Aviation Science Fund of China(No.2013ZD53051)+2 种基金Aerospace Technology Support Fund of Chinathe Industry-Academy-Research Project of AVIC,China(No.cxy2013XGD14)the Open Research Project of Guangdong Key Laboratory of Popular High Performance Computers/Shenzhen Key Laboratory of Service Computing and Applications,China
文摘Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.
基金authorities of East Tehran Branch,Islamic Azad University,Tehran,Iran,for providing support and necessary facilities
文摘Reasons and realities such as being non-linear of dynamical equations,being lightweight and unstable nature of quadrotor,along with internal and external disturbances and parametric uncertainties,have caused that the controller design for these quadrotors is considered the challenging issue of the day.In this work,an adaptive sliding mode controller based on neural network is proposed to control the altitude of a quadrotor.The error and error derivative of the altitude of a quadrotor are the inputs of neural network and altitude sliding surface variable is its output.Neural network estimates the sliding surface variable adaptively according to the conditions of quadrotor and sets the altitude of a quadrotor equal to the desired value.The proposed controller stability has been proven by Lyapunov theory and it is shown that all system states reach to sliding surface and are remaining in it.The superiority of the proposed control method has been proven by comparison and simulation results.