The performance of the wavelength division multiplexing (WDM) photonic analogue-to-digital converter (ADC) used for digitization of high-resolution radar systems is evaluated numerically by using the peak signal-to-no...The performance of the wavelength division multiplexing (WDM) photonic analogue-to-digital converter (ADC) used for digitization of high-resolution radar systems is evaluated numerically by using the peak signal-to-noise ratio (SNR) metric. Two different WDM photonic ADC architectures are considered for the digitization of radar signals with 5 GHz of bandwidth (spatial resolution of 3 cm), in order to provide a comprehensive study of the compromises present when deploying radar signals with high-resolution: 1) a four-channel architecture with each channel employing an ADC with 5 GSamples/s, and 2) an eight-channel architecture with each channel employing an ADC with 2.5 GSamples/s. For peak powers of the pulsed source between 10 and 20 dBm and a distance between the radar antenna and the sensing object of 2.4 meters, peak SNR levels between 29 and 39 dB are achieved with the eight-channel architecture, which shows higher peak SNR levels when compared with the four-channel architecture. For the eight-channel architecture and for the same peak powers of the pulsed source, peak SNR levels between 11 and 16 dB are obtained when the distance increases to 13.5 meters. With this evaluation using the peak SNR, it is possible to assess the performance limits when choosing a specific radar range, while keeping the same resolution.展开更多
针对传统无源有损积分环路滤波器相较于有源无损积分环路滤波器,具有功耗低、电路设计简单等特点,但其噪声传输函数(NTF:Noise Transfer Function)平滑,噪声整形效果较弱的问题,提出了一种无源无损的二阶积分环路滤波器,保留了无源有损...针对传统无源有损积分环路滤波器相较于有源无损积分环路滤波器,具有功耗低、电路设计简单等特点,但其噪声传输函数(NTF:Noise Transfer Function)平滑,噪声整形效果较弱的问题,提出了一种无源无损的二阶积分环路滤波器,保留了无源有损积分优点的同时具有良好噪声整形效果。设计了一款分辨率为16 bit、采样率为2 Ms/s的混合架构噪声整形SAR ADC。仿真结果表明,在125 kHz带宽、过采样比为8时,实现了高信号与噪声失真比(SNDR(Signal to Noise and Distortion Ratio)为91.1 dB)、高精度(14.84 bit)和低功耗(285μW)的性能。展开更多
逐次逼近寄存器模数转换器(SAR ADC)在逐次逼近的过程中,电容的切换会使参考电压上出现参考纹波噪声,该噪声会影响比较器的判定,进而输出错误的比较结果。针对该问题,基于CMOS 0.5μm工艺,设计了一种具有纹波消除技术的10 bit SAR ADC...逐次逼近寄存器模数转换器(SAR ADC)在逐次逼近的过程中,电容的切换会使参考电压上出现参考纹波噪声,该噪声会影响比较器的判定,进而输出错误的比较结果。针对该问题,基于CMOS 0.5μm工艺,设计了一种具有纹波消除技术的10 bit SAR ADC。通过增加纹波至比较器输入端的额外路径,将参考纹波满摆幅输入至比较器中;同时设计了消除数模转换器(DAC)模块,对参考纹波进行采样和输入,通过反转纹波噪声的极性,消除参考纹波对ADC输出的影响。该设计将信噪比(SNR)提高到56.75 dB,将有效位数(ENOB)提升到9.14 bit,将积分非线性(INL)从-1~5 LSB降低到-0.2~0.3 LSB,将微分非线性(DNL)从-3~4 LSB降低到-0.5~0.5 LSB。展开更多
A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sa...A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sampling capacitor, and the other capacitor was just a temporary storage of charge. Then, the linearity produced by the mismatch of these capacitors was eliminated without adding extra capacitor error-averaging amplifiers. The simulation results confirmed the high linearity and low dissipation of pipelined ADCs implemented in CTST, so CTST was a new method to implement high resolution, small size ADCs.展开更多
A correlation-based digital background calibration algorithm for pipelined Analog-to- Digital Converters (ADCs) is presented in this paper. The merit of the calibration algorithm is that the main errors information, w...A correlation-based digital background calibration algorithm for pipelined Analog-to- Digital Converters (ADCs) is presented in this paper. The merit of the calibration algorithm is that the main errors information, which include the capacitor mismatches and residue amplifier distortion, are extracted integrally. A modified 1st pipelined stage is adopted to solve the signal overflow caused by the Pseudo-random Noise (PN) sequences. Behavioral simulation results verify the effectiveness of the algorithm. It improves the Signal-to-Noise-plus-Distortion Ratio (SNDR) and Spurious-Free-Dynamic-Range (SFDR) of the pipelined ADC from 41.8 dB to 78.3 dB and 55.6 dB to 98.6 dB, respectively, which is comparable to the prior arts.展开更多
The digital measurement and processing is an important direction in the measurement and control field. The quantization error widely existing in the digital processing is always the decisive factor that restricts the ...The digital measurement and processing is an important direction in the measurement and control field. The quantization error widely existing in the digital processing is always the decisive factor that restricts the development and applications of the digital technology. In this paper, we find that the stability of the digital quantization system is obviously better than the quantization resolution. The application of a border effect in the digital quantization can greatly improve the accuracy of digital processing. Its effective precision has nothing to do with the number of quantization bits, which is only related to the stability of the quantization system. The high precision measurement results obtained in the low level quantization system with high sampling rate have an important application value for the progress in the digital measurement and processing field.展开更多
Digital calibration techniques are widely developed to cancel the non-idealities of the pipelined Analog-to-Digital Converters (ADCs). This letter presents a fast foreground digital calibration technique based on the ...Digital calibration techniques are widely developed to cancel the non-idealities of the pipelined Analog-to-Digital Converters (ADCs). This letter presents a fast foreground digital calibration technique based on the analysis of error sources which influence the resolution of pipelined ADCs. This method estimates the gain error of the ADC prototype quickly and calibrates the ADC simultaneously in the operation time. Finally, a 10 bit, 100 Ms/s pipelined ADC is implemented and calibrated. The simulation results show that the digital calibration technique has its efficiency with fewer operation cycles.展开更多
针对软件无线电架构的导航接收机对模数转换器的高输入带宽、高速及低功耗的需求,通过集成低功耗宽带采样保持电路及新型非二进制权重的电容阵列数模转换器电路,采用逐次逼近型模数转换器架构,设计实现了一款射频直接采样SAR模数转换器...针对软件无线电架构的导航接收机对模数转换器的高输入带宽、高速及低功耗的需求,通过集成低功耗宽带采样保持电路及新型非二进制权重的电容阵列数模转换器电路,采用逐次逼近型模数转换器架构,设计实现了一款射频直接采样SAR模数转换器。采用55 nm CMOS工艺电路设计、版图设计、仿真及硅流片验证,测试结果表明,该ADC实现了34 dB SNDR、36 dB SFDR和1.6 GHz的模拟输入信号带宽。该ADC的版图面积为670μm×390μm,功耗为9.6 mW。展开更多
文摘The performance of the wavelength division multiplexing (WDM) photonic analogue-to-digital converter (ADC) used for digitization of high-resolution radar systems is evaluated numerically by using the peak signal-to-noise ratio (SNR) metric. Two different WDM photonic ADC architectures are considered for the digitization of radar signals with 5 GHz of bandwidth (spatial resolution of 3 cm), in order to provide a comprehensive study of the compromises present when deploying radar signals with high-resolution: 1) a four-channel architecture with each channel employing an ADC with 5 GSamples/s, and 2) an eight-channel architecture with each channel employing an ADC with 2.5 GSamples/s. For peak powers of the pulsed source between 10 and 20 dBm and a distance between the radar antenna and the sensing object of 2.4 meters, peak SNR levels between 29 and 39 dB are achieved with the eight-channel architecture, which shows higher peak SNR levels when compared with the four-channel architecture. For the eight-channel architecture and for the same peak powers of the pulsed source, peak SNR levels between 11 and 16 dB are obtained when the distance increases to 13.5 meters. With this evaluation using the peak SNR, it is possible to assess the performance limits when choosing a specific radar range, while keeping the same resolution.
文摘针对传统无源有损积分环路滤波器相较于有源无损积分环路滤波器,具有功耗低、电路设计简单等特点,但其噪声传输函数(NTF:Noise Transfer Function)平滑,噪声整形效果较弱的问题,提出了一种无源无损的二阶积分环路滤波器,保留了无源有损积分优点的同时具有良好噪声整形效果。设计了一款分辨率为16 bit、采样率为2 Ms/s的混合架构噪声整形SAR ADC。仿真结果表明,在125 kHz带宽、过采样比为8时,实现了高信号与噪声失真比(SNDR(Signal to Noise and Distortion Ratio)为91.1 dB)、高精度(14.84 bit)和低功耗(285μW)的性能。
基金The National Science Fund for Creative Re-search Groups( Grant No 60521002 )Shanghai Natural Science Foundation (GrantNo 037062022)
文摘A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sampling capacitor, and the other capacitor was just a temporary storage of charge. Then, the linearity produced by the mismatch of these capacitors was eliminated without adding extra capacitor error-averaging amplifiers. The simulation results confirmed the high linearity and low dissipation of pipelined ADCs implemented in CTST, so CTST was a new method to implement high resolution, small size ADCs.
基金Supported by the Doctoral Program Foundation of Institutions of Higher Education of China (No.20120111120008)State Key Lab of ASIC & System(Fudan University) (No. 11KF001)Special Fund for Doctoral Program (Hefei University of Technology) (No.2011HGBZ0953)
文摘A correlation-based digital background calibration algorithm for pipelined Analog-to- Digital Converters (ADCs) is presented in this paper. The merit of the calibration algorithm is that the main errors information, which include the capacitor mismatches and residue amplifier distortion, are extracted integrally. A modified 1st pipelined stage is adopted to solve the signal overflow caused by the Pseudo-random Noise (PN) sequences. Behavioral simulation results verify the effectiveness of the algorithm. It improves the Signal-to-Noise-plus-Distortion Ratio (SNDR) and Spurious-Free-Dynamic-Range (SFDR) of the pipelined ADC from 41.8 dB to 78.3 dB and 55.6 dB to 98.6 dB, respectively, which is comparable to the prior arts.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10978017 and 61201288)Shaanxi Natural Science Foundation Research Plan Projects,China(Grant No.2014JM2-6128)Shaanxi Major Technological Achievements Transformation and Guidance Special Projects,China(Grant No.2015KTCG01-01)
文摘The digital measurement and processing is an important direction in the measurement and control field. The quantization error widely existing in the digital processing is always the decisive factor that restricts the development and applications of the digital technology. In this paper, we find that the stability of the digital quantization system is obviously better than the quantization resolution. The application of a border effect in the digital quantization can greatly improve the accuracy of digital processing. Its effective precision has nothing to do with the number of quantization bits, which is only related to the stability of the quantization system. The high precision measurement results obtained in the low level quantization system with high sampling rate have an important application value for the progress in the digital measurement and processing field.
文摘Digital calibration techniques are widely developed to cancel the non-idealities of the pipelined Analog-to-Digital Converters (ADCs). This letter presents a fast foreground digital calibration technique based on the analysis of error sources which influence the resolution of pipelined ADCs. This method estimates the gain error of the ADC prototype quickly and calibrates the ADC simultaneously in the operation time. Finally, a 10 bit, 100 Ms/s pipelined ADC is implemented and calibrated. The simulation results show that the digital calibration technique has its efficiency with fewer operation cycles.
文摘针对软件无线电架构的导航接收机对模数转换器的高输入带宽、高速及低功耗的需求,通过集成低功耗宽带采样保持电路及新型非二进制权重的电容阵列数模转换器电路,采用逐次逼近型模数转换器架构,设计实现了一款射频直接采样SAR模数转换器。采用55 nm CMOS工艺电路设计、版图设计、仿真及硅流片验证,测试结果表明,该ADC实现了34 dB SNDR、36 dB SFDR和1.6 GHz的模拟输入信号带宽。该ADC的版图面积为670μm×390μm,功耗为9.6 mW。