When a Nd:YAG laser, the wavelength of which is permeable for diamond, is focused on the surface of a diamond sample, a layer of surface material is ablated. Therefore, diamond can be cut by repetitive irradiation. I...When a Nd:YAG laser, the wavelength of which is permeable for diamond, is focused on the surface of a diamond sample, a layer of surface material is ablated. Therefore, diamond can be cut by repetitive irradiation. In this study, the processing mechanism of ablation for a single crystal diamond was examined using a heat conduction analysis, considering laser absorption at the surface or the temperature dependence of absorption coefficient. When the laser beam is absorbed at the surface layer, the surface layer is ablated during an early period in the laser pulse. Once the absorption surface layer is ablated, the laser beam penetrates the base material and ablation stops. On the other hand, if the authors assume that single crystal diamond has the temperature dependence of absorption coefficient which is about equal to that of CVD (chemical vapor deposition) diamond, the temperature rise is not enough to ablate the material. However, it became clear that the diamond is ablated deeply when the authors consider both absorption at the surface layer and the temperature dependence of the absorption coefficient. It can be considered that the surface is transformed to graphite and becomes the absorption layer during the repetitive irradiation. It is estimated that the phase change to graphite is very small and its volume fraction is a few percent at most.展开更多
By employing an electrical micro-titration system, in which a capacitively coupled contactless conductivity detector(C^4D) was used to monitor the reaction process in real time, herein a novel method for determining...By employing an electrical micro-titration system, in which a capacitively coupled contactless conductivity detector(C^4D) was used to monitor the reaction process in real time, herein a novel method for determining ciprofloxacin hydrochloride(CIPHCl) was developed for the first time. Mode 1: Standard CIPHCl solutions at different concentrations were loaded into reaction cells, respectively, and were titrated with standard Ag^+. Upon the titration, the formation of a precipitate alters the number of ions in the solution, raising the change of conductivity, which was monitored by a special C-4 D to construct a titration curve. The endpoint of the titration was located from the peak of the curve. Between the elapsed time and the initial concentration of titrand, a linear relationship was established over the range of2.0–8.0 mmol/L. Mode 2: Standard Fe^3+ took the place of Ag^+, and was used as titrant to recognize ciprofloxacin contributed to the formation of complexation, which also resulting a change of solution conductivity. Under optimized conditions, a working range of 1.0–5.0 mmol/L CIPHCl was found. Because the reaction solutions were isolated from the working electrodes, this pioneer work shows significant simplicity and cost-effectiveness, by eliminating the requirements for detector exchange/renewal between different measurements, and by involving no auxiliary chemicals. Both of the two approaches were applied successfully to determine CIPHCl in tablet samples. And the results were in good agreement with those obtained by reference method.展开更多
文摘When a Nd:YAG laser, the wavelength of which is permeable for diamond, is focused on the surface of a diamond sample, a layer of surface material is ablated. Therefore, diamond can be cut by repetitive irradiation. In this study, the processing mechanism of ablation for a single crystal diamond was examined using a heat conduction analysis, considering laser absorption at the surface or the temperature dependence of absorption coefficient. When the laser beam is absorbed at the surface layer, the surface layer is ablated during an early period in the laser pulse. Once the absorption surface layer is ablated, the laser beam penetrates the base material and ablation stops. On the other hand, if the authors assume that single crystal diamond has the temperature dependence of absorption coefficient which is about equal to that of CVD (chemical vapor deposition) diamond, the temperature rise is not enough to ablate the material. However, it became clear that the diamond is ablated deeply when the authors consider both absorption at the surface layer and the temperature dependence of the absorption coefficient. It can be considered that the surface is transformed to graphite and becomes the absorption layer during the repetitive irradiation. It is estimated that the phase change to graphite is very small and its volume fraction is a few percent at most.
基金financial support from Key R&D of Shandong Province (No. 2016GSF120008)Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ02-05)
文摘By employing an electrical micro-titration system, in which a capacitively coupled contactless conductivity detector(C^4D) was used to monitor the reaction process in real time, herein a novel method for determining ciprofloxacin hydrochloride(CIPHCl) was developed for the first time. Mode 1: Standard CIPHCl solutions at different concentrations were loaded into reaction cells, respectively, and were titrated with standard Ag^+. Upon the titration, the formation of a precipitate alters the number of ions in the solution, raising the change of conductivity, which was monitored by a special C-4 D to construct a titration curve. The endpoint of the titration was located from the peak of the curve. Between the elapsed time and the initial concentration of titrand, a linear relationship was established over the range of2.0–8.0 mmol/L. Mode 2: Standard Fe^3+ took the place of Ag^+, and was used as titrant to recognize ciprofloxacin contributed to the formation of complexation, which also resulting a change of solution conductivity. Under optimized conditions, a working range of 1.0–5.0 mmol/L CIPHCl was found. Because the reaction solutions were isolated from the working electrodes, this pioneer work shows significant simplicity and cost-effectiveness, by eliminating the requirements for detector exchange/renewal between different measurements, and by involving no auxiliary chemicals. Both of the two approaches were applied successfully to determine CIPHCl in tablet samples. And the results were in good agreement with those obtained by reference method.