Objective In order to reduce the interfering noise from the earth surface, scientists have carried out multi-geophysical borehole observations and the related study. This study aims at improving signal-to-noise ratio ...Objective In order to reduce the interfering noise from the earth surface, scientists have carried out multi-geophysical borehole observations and the related study. This study aims at improving signal-to-noise ratio obtained from the observation data to obtain zero noise data, which will be of great help to improve geophysical studies. Insights from this study will be significant for the earthquake disaster reduction, resource exploration and environmental protection.展开更多
The spatial variation and diurnal fluctuation of sea surface wind over the Qiongzhou Strait were described using verified datasets from automatic weather stations on board a ferry, buoys, and on the coast. Results are...The spatial variation and diurnal fluctuation of sea surface wind over the Qiongzhou Strait were described using verified datasets from automatic weather stations on board a ferry, buoys, and on the coast. Results are as follows: (1) On average, sea surface wind speed is 34 m/s larger over the Qiongzhou Strait than in the coastal area. Sea surface wind speeds of 8.0 rrds or above (on Beaufort scale five) in the coastal area are associated with speeds 5-6 m/s greater over the surface of the Qiongzhou Strait. (2) Gust coefficients for the Qiongzhou Strait decrease along with increasing wind speeds. When coastal wind speed is less than scale five, the average gust coefficient over the sea surface is between 1.4 and 1.5; when wind speed is equal to scale five or above, the average gust coefficient is about 1.35. (3) In autumn and winter, the diurnal differences of average wind speed and wind consistency over the strait are less than those in the coastal area; when wind speed is 10.8 m/s (scale six) or above, the diurnal difference of average wind speed decreases while wind consistency increases for both the strait and the coast.展开更多
Traditional orthogonal strapdown inertial navigation sys-tem (SINS) cannot achieve satisfactory self-alignment accuracy in the stationary base: taking more than 5 minutes and al the iner-tial sensors biases cannot ...Traditional orthogonal strapdown inertial navigation sys-tem (SINS) cannot achieve satisfactory self-alignment accuracy in the stationary base: taking more than 5 minutes and al the iner-tial sensors biases cannot get ful observability except the up-axis accelerometer. However, the ful skewed redundant SINS (RSINS) can not only enhance the reliability of the system, but also improve the accuracy of the system, such as the initial alignment. Firstly, the observability of the system state includes attitude errors and al the inertial sensors biases are analyzed with the global perspective method: any three gyroscopes and three accelerometers can be assembled into an independent subordinate SINS (sub-SINS);the system state can be uniquely confirmed by the coupling connec-tions of al the sub-SINSs;the attitude errors and random constant biases of al the inertial sensors are observable. However, the ran-dom noises of the inertial sensors are not taken into account in the above analyzing process. Secondly, the ful-observable Kalman filter which can be applied to the actual RSINS containing random noises is established; the system state includes the position, ve-locity, attitude errors of al the sub-SINSs and the random constant biases of the redundant inertial sensors. At last, the initial self-alignment process of a typical four-redundancy ful skewed RSINS is simulated: the horizontal attitudes (pitch, rol ) errors and yaw error can be exactly evaluated within 80 s and 100 s respectively, while the random constant biases of gyroscopes and accelero-meters can be precisely evaluated within 120 s. For the ful skewed RSINS, the self-alignment accuracy is greatly improved, mean-while the self-alignment time is widely shortened.展开更多
As one of the most severe typhoons in the year 2005,Typhoon Longwang is chosen as a case study in this article.Throughout its life,two surveillance flights are carried out on it.Different from previous studies,GPS(glo...As one of the most severe typhoons in the year 2005,Typhoon Longwang is chosen as a case study in this article.Throughout its life,two surveillance flights are carried out on it.Different from previous studies,GPS(global positioning system)Dropwinsonde data collected from the Dropwinsonde Observations for Typhoon Surveillance near the Taiwan Region is chosen to present the thermodynamic and kinetic structure at its two different stages of development.This study suggests that not only kinetic structure but also thermodynamic structure of Longwang are more robust in the second surveillance than the first surveillance,with stronger and larger circulation and a warmer core.Further research shows that the environmental vertical wind shear mainly contributes to the asymmetric structure of the typhoon.The strong vertical wind shear not only results in the distinct asymmetric structure,but also restrains the development of the typhoon.展开更多
To study the parameter estimating effects of a free-floating tumbling space target,the extended Kalman filter(EKF)scheme is utilized with different high-nonlinear translational and rotational coupled kinematic&dyn...To study the parameter estimating effects of a free-floating tumbling space target,the extended Kalman filter(EKF)scheme is utilized with different high-nonlinear translational and rotational coupled kinematic&dynamic models on the LIDAR measurements.Applying the aforementioned models and measurements results in the situation where one single state can be estimated differently with varying accuracies since the EKFs based on different models have different observabilities.In the proposed EKFs,the traditional quaternions based kinematics and dynamics and the dual vector quaternions(DVQ)based kinematics and dynamics are used for the modeling of the relative motions between a chaser satellite and an uncooperative target.In the non-contact estimating scenarios,only highly nonlinear relative attitude and range measurements:the grapple fixture on the target measured from the chaser satellite via vision-based sensors,can be used.By evaluating the results of the EKFs,the observability properties of each EKF are studied analytically and numerically with the the Observability Gramian matrices(OG)and the standard deviations for every estimated parameters.The analysis of observability perform intensive studies and reveal the intrinsic factors that affect the accuracy and stability of the parameters estimation of an uncooperative space target.Finally,the analytical and numerical results show the optimal composition of the kinematic&dynamic models and measurements.展开更多
An efficient observability analysis method is proposed to enable online detection of performance degradation of an optimization-based sliding window visual-inertial state estimation framework.The proposed methodology ...An efficient observability analysis method is proposed to enable online detection of performance degradation of an optimization-based sliding window visual-inertial state estimation framework.The proposed methodology leverages numerical techniques in nonlinear observability analysis to enable online evaluation of the system observability and indication of the state estimation performance.Specifically,an empirical observability Gramian based approach is introduced to efficiently measure the observability condition of the windowed nonlinear system,and a scalar index is proposed to quantify the average system observability.The proposed approach is specialized to a challenging optimizationbased sliding window monocular visual-inertial state estimation formulation and evaluated through simulation and experiments to assess the efficacy of the methodology.The analysis result shows that the proposed approach can correctly indicate degradation of the state estimation accuracy with real-time performance.展开更多
A methodology is proposed to enable real-time evaluation of the observability of local motions,and generate a local observability cost map to enable informed local motion planning in order to avoid potential degradati...A methodology is proposed to enable real-time evaluation of the observability of local motions,and generate a local observability cost map to enable informed local motion planning in order to avoid potential degradation or degeneracy in state estimator performance.The proposed approach leverages efficient numerical techniques in nonlinear observability analysis and motion primitive-based planning technique to realize the local observability prediction with real-time performance.The degradation of the state estimation performance can be readily predicted with the local observability evaluation result.The proposed approach is specialized to a representative optimization-based monocular visual-inertial state estimation formulation and evaluated through simulation and experiments.The experimental results demonstrated the ability of the proposed methodology to correctly anticipate the potential state estimation degradation.展开更多
The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to st...The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to study the system observability to improve the target tracking system performance.The uniqueness of this paper is that the observability analysis is derived based on a discrete three-dimensional (3D) system model. During the maneuvering scenario,the system is approximated by a segment-by-segment system. The relationship between missile-target motion and observability is given by direct and dual approaches. Meanwhile sufficient observability conditions are derived. Moreover,a numerical simulation is conducted and an alternate method is provided to reinforce the proposed observability analysis results.展开更多
An active perception methodology is proposed to locally predict the observability condition in a reasonable horizon and suggest an observability-constrained motion direction for the next step to ensure an accurate and...An active perception methodology is proposed to locally predict the observability condition in a reasonable horizon and suggest an observability-constrained motion direction for the next step to ensure an accurate and consistent state estimation performance of vision-based navigation systems. The methodology leverages an efficient EOG-based observability analysis and a motion primitive-based path sampling technique to realize the local observability prediction with a real-time performance. The observability conditions of potential motion trajectories are evaluated,and an informed motion direction is selected to ensure the observability efficiency for the state estimation system. The proposed approach is specialized to a representative optimizationbased monocular vision-based state estimation formulation and demonstrated through simulation and experiments to evaluate the ability of estimation degradation prediction and efficacy of motion direction suggestion.展开更多
In this paper, almost all available observational data and the latest 6.0 version of Regional Atmospheric Modeling System (RAMS) model were employed to investigate a heavy sea fog event occurring over the Yellow Sea f...In this paper, almost all available observational data and the latest 6.0 version of Regional Atmospheric Modeling System (RAMS) model were employed to investigate a heavy sea fog event occurring over the Yellow Sea from 2 to 5 May 2009. The evolutionary process of this event was documented by using Multifunctional Transport Satellites-1 (MTSAT-1) visible satellite imagery. The synoptic situation, sounding profiles at two selected stations were analyzed. The difference between the air temperature and sea surface temperature during the sea fog event over the entire sea region was also analyzed. In order to better understand this event, an RAMS modeling with a 15 km×15 km resolution was performed. The model successfully reproduced the main characteristics of this sea fog event. The simulated height of fog top and the area of lower atmospheric visibility derived from the RAMS modeling results showed good agreement with the sea fog area identified from the satellite imagery. Examinations of both observational data and RAMS modeling results suggested that advection cooling seemed to play an important role in the formation of this sea fog event.展开更多
We investigate the influence of population density on radio-frequency inter- ference (RFI) affecting radio astronomy. We use a new method to quantify the thresh- old of population density in order to determine the m...We investigate the influence of population density on radio-frequency inter- ference (RFI) affecting radio astronomy. We use a new method to quantify the thresh- old of population density in order to determine the most suitable lower limit for site selection of a radio quiet zone (RQZ). We found that there is a certain trend in the population density-RFI graph that increases rapidly at lower values and slows down to almost fiat at higher values. We use this trend to identify the thresholds for pop- ulation density that produce RFI. Using this method we found that, for frequencies up to 2.8 GHz, low, medium and high population densities affecting radio astronomy are below 150 ppl km-2, between i50 ppl km-2 and 5125 ppl km-~, and above 5125 ppl km-2 respectively. We also investigate the effect of population density on the environment of RFI in three astronomical windows, namely the deuterium, hydro- gen and hydroxyl lines. We find that a polynomial fitting to the population density produces a similar trend, giving similar thresholds for the effect of population density. We then compare our interference values to the standard threshold levels used by the International Telecommunication Union within these astronomical windows.展开更多
We performed detailed time-resolved spectroscopy of bright tong gamma- ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B and GRB 090926A). In addition to the standard Band model, we ...We performed detailed time-resolved spectroscopy of bright tong gamma- ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B and GRB 090926A). In addition to the standard Band model, we also use a model consisting of a black body and a power law to fit the spectra. We find that for the latter model there are indications of an additional soft component in the spectra. While previous studies have shown that such models are required for GRB 090902B, here we find that a composite spectral model consisting of two blackbodies and a power law adequately fits the data of all the three bright GRBs. We investigate the evolution of the spectral parameters and find several interesting features that appear in all three GRBs, like (a) temperatures of the blackbodies are strongly correlated with each other, (b) fluxes in the black body components are strongly correlated with each other, (c) the temperatures of the black body trace the profile of the individual pulses of the GRBs, and (d) the characteristics of power law components like the spectral index and the delayed onset bear a close similarity to the emission characteristics in the GeV regions. We discuss the implications of these results and the possibility of identifying the radiation mechanisms during the prompt emission of GRBs.展开更多
In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the ...In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the developing megaconstellations in low-Earth orbit,this paper proposes a relay tracking mode to track HGVs to overcome the above problem.The whole tracking mission is composed of several tracking intervals with the same duration.Within each tracking interval,several appropriate satellites are dispatched to track the HGV.Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion.The tracking performances of the proposed tracking mode and the other two traditional tracking modes,including the stare and track-rate modes,are compared by simulation.The results show that the relay tracking mode can track the whole trajectory of a HGV,while the stare mode can only provide a very short tracking arc.Moreover,the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode.展开更多
In the process of initial alignment for a strapdown inertial navigation system (SINS) on a stationary base, the east gyro drift rate is an important factor affecting the alignment accuracy of the azimuth misalignmen...In the process of initial alignment for a strapdown inertial navigation system (SINS) on a stationary base, the east gyro drift rate is an important factor affecting the alignment accuracy of the azimuth misalignment angle. When the Kalman filtering algorithm is adopted in initial alignment, it yields a constant error in the estimation of the azimuth misalignment angle because the east gyro drift rate cannot be estimated. To improve the alignment accuracy, a novel alignment method on revolving mounting base is proposed. The Kalman filtering algorithm of extending the measured values is studied. The theory of spectral condition number is utilized to analyze the degrees of observability of states. Simulation results show that the estimation accuracy of the azimuth misalignment angle is greatly improved through revolving mounting base, and the proposed method is efficient in initial alignment for a medium accurate SINS.展开更多
The increasing number of space debris has created an orbital debris environment that poses increasing impact risks to existing space systems and human space flights. For the safety of in-orbit spacecrafts, we should o...The increasing number of space debris has created an orbital debris environment that poses increasing impact risks to existing space systems and human space flights. For the safety of in-orbit spacecrafts, we should optimally schedule surveillance tasks for the existing facilities to allocate re- sources in a manner that most significantly improves the ability to predict and detect events involving affected spacecrafts. This paper analyzes two criteria that mainly affect the performance of a scheduling scheme and introduces an artificial intelligence algorithm into the scheduling of tasks of the space debris surveillance network. A new scheduling algorithm based on the particle swarm optimization algorithm is proposed, which can be implemented in two different ways: individual optimization and joint optimiza- tion. Numerical experiments with multiple facilities and objects are conducted based on the proposed algorithm, and simulation results have demonstrated the effectiveness of the proposed algorithm.展开更多
Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the ...Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the problem of poor observability of angles-only navigation through orbital or attitude maneuvering,but improves the observability of angles-only navigation through capturing the non-linearity of the system in the evolution of relative motion. First,three relative dynamics models and their corresponding line-of-sight(LoS)measurement equations are introduced,including the rectilinear state relative dynamics model,the curvilinear state relative dynamics model,and the relative orbital elements(ROE)state relative dynamics model. Then,an observability analysis theory based on the Gramian matrix is introduced to determine which relative dynamics model could maximize the observability of angles-only navigation. Next,an adaptive extended Kalman filtering scheme is proposed to solve the problem that the angles-only navigation filter using the non-linear dynamics method is sensitive to measurement noises. Finally,the performances of the proposed angles-only navigation architecture are tested by means of numerical simulations,which demonstrates that the angles-only navigation filtering scheme without orbital or attitude maneuvering is completely feasible through improving the modeling of the relative dynamics and LoS measurement equations.展开更多
Transfer alignment is used to initialize SINS(Strapdown Inertial Navigation System)in motion.Lever-arm effect compensation is studied existing in an AUV(Autonomous Underwater Vehicle)before launched from the mother sh...Transfer alignment is used to initialize SINS(Strapdown Inertial Navigation System)in motion.Lever-arm effect compensation is studied existing in an AUV(Autonomous Underwater Vehicle)before launched from the mother ship.The AUV is equipped with SINS,Doppler Velocity Log,depth sensor and other navigation sensors.The lever arm will cause large error on the transfer alignment between master inertial navigation system and slave inertial navigation system,especially in big ship situations.This paper presents a novel method that can effectively estimate and compensate the flexural lever arm between the main inertial navigation system mounted on the mother ship and the slave inertial navigation system equipped on the AUV.The nonlinear measurement equation of angular rate is derived based on three successive rotations of the body frame of the master inertial navigation system.Nonlinear filter is utilized as the nonlinear estimator for its capability of non-linear approximation.Observability analysis was conducted on the SINS state vector based on singular value decomposition method.State equation of SINS was adopted as the system state equation.Simulation experiments were conducted and results showed that the proposed method can estimate the flexural lever arm more accurately,the precision of transfer alignment was improved and alignment time was shortened accordingly.展开更多
3D stereoscopic visualization technology is coming into more and more common use in the field of entertainment,and this technology is also beginning to cut a striking figure in casting industry and scientific research...3D stereoscopic visualization technology is coming into more and more common use in the field of entertainment,and this technology is also beginning to cut a striking figure in casting industry and scientific research.The history,fundamental principle,and devices of 3D stereoscopic visualization technology are reviewed in this paper.The authors’research achievements on the 3D stereoscopic visualization technology in the modeling and simulation of the casting process are presented.This technology can be used for the observation of complex 3D solid models of castings and the simulated results of solidification processes such as temperature,fluid flow,displacement,stress strain and microstructure,as well as the predicted defects such as shrinkage/porosity,cracks,and deformation.It can also be used for other areas relating to 3D models,such as assembling of dies,cores,etc.Several cases are given to compare the illustration of simulated results by traditional images and red-blue 3D stereoscopic images.The spatial shape is observed better by the new method.The prospect of3D stereoscopic visualization in the casting aspect is discussed as well.The need for aided-viewing devices is still the most prominent problem of 3D stereoscopic visualization technology.However,3D stereoscopic visualization represents the tendency of visualization technology in the future;and as the problem is solved in the years ahead,great breakthroughs will certainly be made for its application in casting design and modeling and simulation of the casting processes.展开更多
A subreflector adjustment system for the Tianma 65 m radio telescope, administered by Shanghai Astronomical Observatory, has been installed to compensate for gravitational deformation of the main re- flector and the s...A subreflector adjustment system for the Tianma 65 m radio telescope, administered by Shanghai Astronomical Observatory, has been installed to compensate for gravitational deformation of the main re- flector and the structure supporting the subreflector. The position and attitude of the subreflector are variable in order to improve the efficiency at different elevations. The subreflector model has the goal of improving the antenna's performance. A new fitting formulation which is different from the traditional formulation is proposed to reduce the fitting error in the Y direction. The only difference in the subreflector models of the 65 m radio telescope is the bias of a constant term in the Z direction. We have investigated the effect of movements of the subreflector on the pointing of the antenna. The results of these performance measure- ments made by moving the antenna in elevation show that the subreflector model can effectively improve the efficiency of the 65 m radio telescope at each elevation. An antenna efficiency of about 60% at the Ku band is reached in the whole angular range of elevation.展开更多
This paper reports results from the first long-term BV(RI)c photometric CCD observations of three variable pre-main-sequence stars collected during the period from February 2007 to January 2020. The investigated stars...This paper reports results from the first long-term BV(RI)c photometric CCD observations of three variable pre-main-sequence stars collected during the period from February 2007 to January 2020. The investigated stars are located in the field of the PMS star V733 Cep within the Cepheus OB3 association. All stars from our study show rapid photometric variability in all-optical passbands. In this paper, we describe and discuss the photometric behavior of these stars and the possible reasons for their variability. In the light variation of two of the stars, we found periodicity.展开更多
基金supported by the National Science Foundation of China (grant No.1374052)
文摘Objective In order to reduce the interfering noise from the earth surface, scientists have carried out multi-geophysical borehole observations and the related study. This study aims at improving signal-to-noise ratio obtained from the observation data to obtain zero noise data, which will be of great help to improve geophysical studies. Insights from this study will be significant for the earthquake disaster reduction, resource exploration and environmental protection.
基金Research on the Pattern of gales over the Qiongzhou Strait and Forecasting Methods, a project of Natural Science Foundation of China (40765002)Forecasting System of Gales over the Qiongzhou Strait, a key science project for Hainan province (070302)
文摘The spatial variation and diurnal fluctuation of sea surface wind over the Qiongzhou Strait were described using verified datasets from automatic weather stations on board a ferry, buoys, and on the coast. Results are as follows: (1) On average, sea surface wind speed is 34 m/s larger over the Qiongzhou Strait than in the coastal area. Sea surface wind speeds of 8.0 rrds or above (on Beaufort scale five) in the coastal area are associated with speeds 5-6 m/s greater over the surface of the Qiongzhou Strait. (2) Gust coefficients for the Qiongzhou Strait decrease along with increasing wind speeds. When coastal wind speed is less than scale five, the average gust coefficient over the sea surface is between 1.4 and 1.5; when wind speed is equal to scale five or above, the average gust coefficient is about 1.35. (3) In autumn and winter, the diurnal differences of average wind speed and wind consistency over the strait are less than those in the coastal area; when wind speed is 10.8 m/s (scale six) or above, the diurnal difference of average wind speed decreases while wind consistency increases for both the strait and the coast.
基金supported by the National Defense PreResearch Foundation of China(51309030102)
文摘Traditional orthogonal strapdown inertial navigation sys-tem (SINS) cannot achieve satisfactory self-alignment accuracy in the stationary base: taking more than 5 minutes and al the iner-tial sensors biases cannot get ful observability except the up-axis accelerometer. However, the ful skewed redundant SINS (RSINS) can not only enhance the reliability of the system, but also improve the accuracy of the system, such as the initial alignment. Firstly, the observability of the system state includes attitude errors and al the inertial sensors biases are analyzed with the global perspective method: any three gyroscopes and three accelerometers can be assembled into an independent subordinate SINS (sub-SINS);the system state can be uniquely confirmed by the coupling connec-tions of al the sub-SINSs;the attitude errors and random constant biases of al the inertial sensors are observable. However, the ran-dom noises of the inertial sensors are not taken into account in the above analyzing process. Secondly, the ful-observable Kalman filter which can be applied to the actual RSINS containing random noises is established; the system state includes the position, ve-locity, attitude errors of al the sub-SINSs and the random constant biases of the redundant inertial sensors. At last, the initial self-alignment process of a typical four-redundancy ful skewed RSINS is simulated: the horizontal attitudes (pitch, rol ) errors and yaw error can be exactly evaluated within 80 s and 100 s respectively, while the random constant biases of gyroscopes and accelero-meters can be precisely evaluated within 120 s. For the ful skewed RSINS, the self-alignment accuracy is greatly improved, mean-while the self-alignment time is widely shortened.
基金project of the National Science Foundation of China(40830958,40905020)project of National Basic Research Program of China(2009CB421502)+1 种基金project of the Special Scientific Research for Public Interest(GYHY201006007)project of the Specialized Research Fund for the Doctoral Program of Higher Education of China(20090091120038)
文摘As one of the most severe typhoons in the year 2005,Typhoon Longwang is chosen as a case study in this article.Throughout its life,two surveillance flights are carried out on it.Different from previous studies,GPS(global positioning system)Dropwinsonde data collected from the Dropwinsonde Observations for Typhoon Surveillance near the Taiwan Region is chosen to present the thermodynamic and kinetic structure at its two different stages of development.This study suggests that not only kinetic structure but also thermodynamic structure of Longwang are more robust in the second surveillance than the first surveillance,with stronger and larger circulation and a warmer core.Further research shows that the environmental vertical wind shear mainly contributes to the asymmetric structure of the typhoon.The strong vertical wind shear not only results in the distinct asymmetric structure,but also restrains the development of the typhoon.
文摘To study the parameter estimating effects of a free-floating tumbling space target,the extended Kalman filter(EKF)scheme is utilized with different high-nonlinear translational and rotational coupled kinematic&dynamic models on the LIDAR measurements.Applying the aforementioned models and measurements results in the situation where one single state can be estimated differently with varying accuracies since the EKFs based on different models have different observabilities.In the proposed EKFs,the traditional quaternions based kinematics and dynamics and the dual vector quaternions(DVQ)based kinematics and dynamics are used for the modeling of the relative motions between a chaser satellite and an uncooperative target.In the non-contact estimating scenarios,only highly nonlinear relative attitude and range measurements:the grapple fixture on the target measured from the chaser satellite via vision-based sensors,can be used.By evaluating the results of the EKFs,the observability properties of each EKF are studied analytically and numerically with the the Observability Gramian matrices(OG)and the standard deviations for every estimated parameters.The analysis of observability perform intensive studies and reveal the intrinsic factors that affect the accuracy and stability of the parameters estimation of an uncooperative space target.Finally,the analytical and numerical results show the optimal composition of the kinematic&dynamic models and measurements.
文摘An efficient observability analysis method is proposed to enable online detection of performance degradation of an optimization-based sliding window visual-inertial state estimation framework.The proposed methodology leverages numerical techniques in nonlinear observability analysis to enable online evaluation of the system observability and indication of the state estimation performance.Specifically,an empirical observability Gramian based approach is introduced to efficiently measure the observability condition of the windowed nonlinear system,and a scalar index is proposed to quantify the average system observability.The proposed approach is specialized to a challenging optimizationbased sliding window monocular visual-inertial state estimation formulation and evaluated through simulation and experiments to assess the efficacy of the methodology.The analysis result shows that the proposed approach can correctly indicate degradation of the state estimation accuracy with real-time performance.
文摘A methodology is proposed to enable real-time evaluation of the observability of local motions,and generate a local observability cost map to enable informed local motion planning in order to avoid potential degradation or degeneracy in state estimator performance.The proposed approach leverages efficient numerical techniques in nonlinear observability analysis and motion primitive-based planning technique to realize the local observability prediction with real-time performance.The degradation of the state estimation performance can be readily predicted with the local observability evaluation result.The proposed approach is specialized to a representative optimization-based monocular visual-inertial state estimation formulation and evaluated through simulation and experiments.The experimental results demonstrated the ability of the proposed methodology to correctly anticipate the potential state estimation degradation.
基金Supported by the National Natural Science Foundation of China(61333011)
文摘The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to study the system observability to improve the target tracking system performance.The uniqueness of this paper is that the observability analysis is derived based on a discrete three-dimensional (3D) system model. During the maneuvering scenario,the system is approximated by a segment-by-segment system. The relationship between missile-target motion and observability is given by direct and dual approaches. Meanwhile sufficient observability conditions are derived. Moreover,a numerical simulation is conducted and an alternate method is provided to reinforce the proposed observability analysis results.
文摘An active perception methodology is proposed to locally predict the observability condition in a reasonable horizon and suggest an observability-constrained motion direction for the next step to ensure an accurate and consistent state estimation performance of vision-based navigation systems. The methodology leverages an efficient EOG-based observability analysis and a motion primitive-based path sampling technique to realize the local observability prediction with a real-time performance. The observability conditions of potential motion trajectories are evaluated,and an informed motion direction is selected to ensure the observability efficiency for the state estimation system. The proposed approach is specialized to a representative optimizationbased monocular vision-based state estimation formulation and demonstrated through simulation and experiments to evaluate the ability of estimation degradation prediction and efficacy of motion direction suggestion.
基金supported by the National Natural Science Foundation of China under the grant numbers 41175006 and 40675060the Chinese Meteorological Administration under thegrant GYHY200706031+1 种基金the Chinese Ministry of Science and Technology under the 973 Project grant number 2009CB421504the financial support of the Student Research and Development Program of the Ocean University of China under the grant number 1111010101
文摘In this paper, almost all available observational data and the latest 6.0 version of Regional Atmospheric Modeling System (RAMS) model were employed to investigate a heavy sea fog event occurring over the Yellow Sea from 2 to 5 May 2009. The evolutionary process of this event was documented by using Multifunctional Transport Satellites-1 (MTSAT-1) visible satellite imagery. The synoptic situation, sounding profiles at two selected stations were analyzed. The difference between the air temperature and sea surface temperature during the sea fog event over the entire sea region was also analyzed. In order to better understand this event, an RAMS modeling with a 15 km×15 km resolution was performed. The model successfully reproduced the main characteristics of this sea fog event. The simulated height of fog top and the area of lower atmospheric visibility derived from the RAMS modeling results showed good agreement with the sea fog area identified from the satellite imagery. Examinations of both observational data and RAMS modeling results suggested that advection cooling seemed to play an important role in the formation of this sea fog event.
基金made possible by the usage of the University of Malaya’s grants UMRG(RG118-10AFR),IPPP(PV025-2011A)and HIR(H-21001-F000028)Universiti Sultan Zainal Abidin(UniSZA)and the Ministry of Higher Education(MOHE)for their sponsorship
文摘We investigate the influence of population density on radio-frequency inter- ference (RFI) affecting radio astronomy. We use a new method to quantify the thresh- old of population density in order to determine the most suitable lower limit for site selection of a radio quiet zone (RQZ). We found that there is a certain trend in the population density-RFI graph that increases rapidly at lower values and slows down to almost fiat at higher values. We use this trend to identify the thresholds for pop- ulation density that produce RFI. Using this method we found that, for frequencies up to 2.8 GHz, low, medium and high population densities affecting radio astronomy are below 150 ppl km-2, between i50 ppl km-2 and 5125 ppl km-~, and above 5125 ppl km-2 respectively. We also investigate the effect of population density on the environment of RFI in three astronomical windows, namely the deuterium, hydro- gen and hydroxyl lines. We find that a polynomial fitting to the population density produces a similar trend, giving similar thresholds for the effect of population density. We then compare our interference values to the standard threshold levels used by the International Telecommunication Union within these astronomical windows.
文摘We performed detailed time-resolved spectroscopy of bright tong gamma- ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B and GRB 090926A). In addition to the standard Band model, we also use a model consisting of a black body and a power law to fit the spectra. We find that for the latter model there are indications of an additional soft component in the spectra. While previous studies have shown that such models are required for GRB 090902B, here we find that a composite spectral model consisting of two blackbodies and a power law adequately fits the data of all the three bright GRBs. We investigate the evolution of the spectral parameters and find several interesting features that appear in all three GRBs, like (a) temperatures of the blackbodies are strongly correlated with each other, (b) fluxes in the black body components are strongly correlated with each other, (c) the temperatures of the black body trace the profile of the individual pulses of the GRBs, and (d) the characteristics of power law components like the spectral index and the delayed onset bear a close similarity to the emission characteristics in the GeV regions. We discuss the implications of these results and the possibility of identifying the radiation mechanisms during the prompt emission of GRBs.
基金supported by the Science and Technology Innovation Program of Hunan Province(2021RC3078)。
文摘In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the developing megaconstellations in low-Earth orbit,this paper proposes a relay tracking mode to track HGVs to overcome the above problem.The whole tracking mission is composed of several tracking intervals with the same duration.Within each tracking interval,several appropriate satellites are dispatched to track the HGV.Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion.The tracking performances of the proposed tracking mode and the other two traditional tracking modes,including the stare and track-rate modes,are compared by simulation.The results show that the relay tracking mode can track the whole trajectory of a HGV,while the stare mode can only provide a very short tracking arc.Moreover,the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode.
文摘In the process of initial alignment for a strapdown inertial navigation system (SINS) on a stationary base, the east gyro drift rate is an important factor affecting the alignment accuracy of the azimuth misalignment angle. When the Kalman filtering algorithm is adopted in initial alignment, it yields a constant error in the estimation of the azimuth misalignment angle because the east gyro drift rate cannot be estimated. To improve the alignment accuracy, a novel alignment method on revolving mounting base is proposed. The Kalman filtering algorithm of extending the measured values is studied. The theory of spectral condition number is utilized to analyze the degrees of observability of states. Simulation results show that the estimation accuracy of the azimuth misalignment angle is greatly improved through revolving mounting base, and the proposed method is efficient in initial alignment for a medium accurate SINS.
基金funded by the National Natural Science Foundation of China (Grant No. 11503044)by the Young Researcher Grant of National Astronomical Observatories, Chinese Academy of Sciences
文摘The increasing number of space debris has created an orbital debris environment that poses increasing impact risks to existing space systems and human space flights. For the safety of in-orbit spacecrafts, we should optimally schedule surveillance tasks for the existing facilities to allocate re- sources in a manner that most significantly improves the ability to predict and detect events involving affected spacecrafts. This paper analyzes two criteria that mainly affect the performance of a scheduling scheme and introduces an artificial intelligence algorithm into the scheduling of tasks of the space debris surveillance network. A new scheduling algorithm based on the particle swarm optimization algorithm is proposed, which can be implemented in two different ways: individual optimization and joint optimiza- tion. Numerical experiments with multiple facilities and objects are conducted based on the proposed algorithm, and simulation results have demonstrated the effectiveness of the proposed algorithm.
基金supported by the China Aerospace Science and Technology Corporation Eighth Research Institute Industry-University-Research Cooperation Fund(No.SAST 2020-019)。
文摘Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the problem of poor observability of angles-only navigation through orbital or attitude maneuvering,but improves the observability of angles-only navigation through capturing the non-linearity of the system in the evolution of relative motion. First,three relative dynamics models and their corresponding line-of-sight(LoS)measurement equations are introduced,including the rectilinear state relative dynamics model,the curvilinear state relative dynamics model,and the relative orbital elements(ROE)state relative dynamics model. Then,an observability analysis theory based on the Gramian matrix is introduced to determine which relative dynamics model could maximize the observability of angles-only navigation. Next,an adaptive extended Kalman filtering scheme is proposed to solve the problem that the angles-only navigation filter using the non-linear dynamics method is sensitive to measurement noises. Finally,the performances of the proposed angles-only navigation architecture are tested by means of numerical simulations,which demonstrates that the angles-only navigation filtering scheme without orbital or attitude maneuvering is completely feasible through improving the modeling of the relative dynamics and LoS measurement equations.
基金This work is funded by Natural Science Foundation of Jiangsu Province under Grant BK20160955a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Science Research Foundation of Nanjing University of Information Science and Technology under Grant 20110430+1 种基金Open Foundation of Jiangsu Key Laboratory of Meteorological Observation and Information Processing(KDXS1304)Open Foundation of Jiangsu Key Laboratory of Ocean Dynamic Remote Sensing and Acoustics(KHYS1405).
文摘Transfer alignment is used to initialize SINS(Strapdown Inertial Navigation System)in motion.Lever-arm effect compensation is studied existing in an AUV(Autonomous Underwater Vehicle)before launched from the mother ship.The AUV is equipped with SINS,Doppler Velocity Log,depth sensor and other navigation sensors.The lever arm will cause large error on the transfer alignment between master inertial navigation system and slave inertial navigation system,especially in big ship situations.This paper presents a novel method that can effectively estimate and compensate the flexural lever arm between the main inertial navigation system mounted on the mother ship and the slave inertial navigation system equipped on the AUV.The nonlinear measurement equation of angular rate is derived based on three successive rotations of the body frame of the master inertial navigation system.Nonlinear filter is utilized as the nonlinear estimator for its capability of non-linear approximation.Observability analysis was conducted on the SINS state vector based on singular value decomposition method.State equation of SINS was adopted as the system state equation.Simulation experiments were conducted and results showed that the proposed method can estimate the flexural lever arm more accurately,the precision of transfer alignment was improved and alignment time was shortened accordingly.
文摘3D stereoscopic visualization technology is coming into more and more common use in the field of entertainment,and this technology is also beginning to cut a striking figure in casting industry and scientific research.The history,fundamental principle,and devices of 3D stereoscopic visualization technology are reviewed in this paper.The authors’research achievements on the 3D stereoscopic visualization technology in the modeling and simulation of the casting process are presented.This technology can be used for the observation of complex 3D solid models of castings and the simulated results of solidification processes such as temperature,fluid flow,displacement,stress strain and microstructure,as well as the predicted defects such as shrinkage/porosity,cracks,and deformation.It can also be used for other areas relating to 3D models,such as assembling of dies,cores,etc.Several cases are given to compare the illustration of simulated results by traditional images and red-blue 3D stereoscopic images.The spatial shape is observed better by the new method.The prospect of3D stereoscopic visualization in the casting aspect is discussed as well.The need for aided-viewing devices is still the most prominent problem of 3D stereoscopic visualization technology.However,3D stereoscopic visualization represents the tendency of visualization technology in the future;and as the problem is solved in the years ahead,great breakthroughs will certainly be made for its application in casting design and modeling and simulation of the casting processes.
基金supported by the National Natural Science Foundation of China(No.U1531135)
文摘A subreflector adjustment system for the Tianma 65 m radio telescope, administered by Shanghai Astronomical Observatory, has been installed to compensate for gravitational deformation of the main re- flector and the structure supporting the subreflector. The position and attitude of the subreflector are variable in order to improve the efficiency at different elevations. The subreflector model has the goal of improving the antenna's performance. A new fitting formulation which is different from the traditional formulation is proposed to reduce the fitting error in the Y direction. The only difference in the subreflector models of the 65 m radio telescope is the bias of a constant term in the Z direction. We have investigated the effect of movements of the subreflector on the pointing of the antenna. The results of these performance measure- ments made by moving the antenna in elevation show that the subreflector model can effectively improve the efficiency of the 65 m radio telescope at each elevation. An antenna efficiency of about 60% at the Ku band is reached in the whole angular range of elevation.
基金partly supported by the Bulgarian Ministry of Education and Science under the National Program for Research“Young Scientists and Postdoctoral Students”partial support by grant DN 18-13/2017 from the Bulgarian National Science Fund。
文摘This paper reports results from the first long-term BV(RI)c photometric CCD observations of three variable pre-main-sequence stars collected during the period from February 2007 to January 2020. The investigated stars are located in the field of the PMS star V733 Cep within the Cepheus OB3 association. All stars from our study show rapid photometric variability in all-optical passbands. In this paper, we describe and discuss the photometric behavior of these stars and the possible reasons for their variability. In the light variation of two of the stars, we found periodicity.