The transient stability issues caused by doubly fed induction generator(DFIG)-based wind turbines(WTs)are receiving increasing attention.The q-axis reactive power control(QCtrl),as an essential part of DFIG-based WTs,...The transient stability issues caused by doubly fed induction generator(DFIG)-based wind turbines(WTs)are receiving increasing attention.The q-axis reactive power control(QCtrl),as an essential part of DFIG-based WTs,has a significant impact on its transient response.In this paper,the impact of QCtrl on the phase/amplitude transient stability of a DFIGbased WT-dominated system is analyzed from the perspective of internal voltage amplitude-phase coupling characteristics.First,an amplitude/phase dynamic model of a DFIG-based WT in rotor speed control timescale(in seconds,corresponding to traditional electromechanical timescale)is developed.Then,in comparison with familiar synchronous generators(SGs),an inherently amplitude-phase characteristic of internal voltage for a DFIG-based WT is identified.Next,taking the DFIG-based WTdominated system as an example,the impact of QCtrl on system transient stability via the internal coupling paths is analyzed.A novel phase-amplitude coupling instability mechanism is found,which is different from that in a traditional SG-dominated system.Finally,the effects of different QCtrl strategies on transient stability are discussed.展开更多
Restructured electric market environment allows the power wheeling transactions between the power producers and customers to meet the growing load demand. This will lead to the possible of congestion in the transmissi...Restructured electric market environment allows the power wheeling transactions between the power producers and customers to meet the growing load demand. This will lead to the possible of congestion in the transmission lines. The possible contingencies of power components further worsen the scenario. This paper describes the methodology for the identification of critical transmission line by computing the real power and reactive power performance indices. It also demonstrates the importance of fuzzy logic technique used to rank the transmission lines according to the severity and demonstrated on IEEE-30 bus system.展开更多
Given the“carbon neutralization and carbon peak”policy,enhancing the low voltage ride-through(LVRT)capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the...Given the“carbon neutralization and carbon peak”policy,enhancing the low voltage ride-through(LVRT)capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the context of a possible severe threat of large-scale disconnection caused by wind farms.Currently,research on the LVRT of wind farms mainly focuses on suppressing rotor current and providing reactive current support,while the impact of active current output on LVRT performance has not been thoroughly discussed.This paper studies and reveals the relation-ship between the limit of reactive current output and the depth of voltage drop during LVRT for doubly-fed induction generator(DFIG)based wind farms.Specifically,the reactive current output limit of the grid-side converter is inde-pendent of the depth of voltage drop,and its limit is the maximum current allowed by the converter,while the reac-tive current output limit of the DFIG stator is a linear function of the depth of voltage drop.An optimized scheme for allocating reactive current among the STATCOM,DFIG stator,and grid-side converter is proposed.The scheme maximizes the output of active current while satisfying the standard requirements for reactive current output.Com-pared to traditional schemes,the proposed LVRT optimization strategy can output more active power during the LVRT period,effectively suppressing the rate of rotor speed increase,and improving the LVRT performance and fault recov-ery capability of wind farms.Simulation results verify the effectiveness of the proposed scheme.展开更多
为探究频率动态与功角振荡间的耦合特性,文中以双机系统为例推导扰动后系统稳定电网频率动态特性和功角振荡机理,基于扩展等面积准则(extended equal area criterion,EEAC)扩展至多机系统,提出了基于Pearson系数的耦合强度量化评估指标...为探究频率动态与功角振荡间的耦合特性,文中以双机系统为例推导扰动后系统稳定电网频率动态特性和功角振荡机理,基于扩展等面积准则(extended equal area criterion,EEAC)扩展至多机系统,提出了基于Pearson系数的耦合强度量化评估指标,根据频率动态特征和功角振荡特征对耦合关系进行量化。文中分析了功角振荡对频率动态特征指标的影响,量化评估了不同频率动态指标与功角振荡指标的耦合强度。理论分析和算例结果表明构建的指标体系具有合理性,电力系统的频率动态与功角振荡相互耦合,为频率和功角的优化控制措施提供了参考。展开更多
在分析注入式混合有源电力滤波器(injection typehybrid active power filter,IHAPF)工作原理的基础上,从控制的角度提出电压型逆变器的数学模型,在此基础上建立IHAPF的数学模型,对其稳定性和谐波抑制能力进行分析,着重探讨控制器参数对...在分析注入式混合有源电力滤波器(injection typehybrid active power filter,IHAPF)工作原理的基础上,从控制的角度提出电压型逆变器的数学模型,在此基础上建立IHAPF的数学模型,对其稳定性和谐波抑制能力进行分析,着重探讨控制器参数对IHAPF稳定性和谐波抑制能力的影响,并提出控制器参数选择方法。仿真和实验结果证明了分析的正确性。展开更多
基金This work was supported in part by the China South Grid Consulting Project,in part by the Natural Science Foundation of China under Grant 51777083.
文摘The transient stability issues caused by doubly fed induction generator(DFIG)-based wind turbines(WTs)are receiving increasing attention.The q-axis reactive power control(QCtrl),as an essential part of DFIG-based WTs,has a significant impact on its transient response.In this paper,the impact of QCtrl on the phase/amplitude transient stability of a DFIGbased WT-dominated system is analyzed from the perspective of internal voltage amplitude-phase coupling characteristics.First,an amplitude/phase dynamic model of a DFIG-based WT in rotor speed control timescale(in seconds,corresponding to traditional electromechanical timescale)is developed.Then,in comparison with familiar synchronous generators(SGs),an inherently amplitude-phase characteristic of internal voltage for a DFIG-based WT is identified.Next,taking the DFIG-based WTdominated system as an example,the impact of QCtrl on system transient stability via the internal coupling paths is analyzed.A novel phase-amplitude coupling instability mechanism is found,which is different from that in a traditional SG-dominated system.Finally,the effects of different QCtrl strategies on transient stability are discussed.
文摘Restructured electric market environment allows the power wheeling transactions between the power producers and customers to meet the growing load demand. This will lead to the possible of congestion in the transmission lines. The possible contingencies of power components further worsen the scenario. This paper describes the methodology for the identification of critical transmission line by computing the real power and reactive power performance indices. It also demonstrates the importance of fuzzy logic technique used to rank the transmission lines according to the severity and demonstrated on IEEE-30 bus system.
基金supported by the National Natural Science Foundation of China 52177108。
文摘Given the“carbon neutralization and carbon peak”policy,enhancing the low voltage ride-through(LVRT)capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the context of a possible severe threat of large-scale disconnection caused by wind farms.Currently,research on the LVRT of wind farms mainly focuses on suppressing rotor current and providing reactive current support,while the impact of active current output on LVRT performance has not been thoroughly discussed.This paper studies and reveals the relation-ship between the limit of reactive current output and the depth of voltage drop during LVRT for doubly-fed induction generator(DFIG)based wind farms.Specifically,the reactive current output limit of the grid-side converter is inde-pendent of the depth of voltage drop,and its limit is the maximum current allowed by the converter,while the reac-tive current output limit of the DFIG stator is a linear function of the depth of voltage drop.An optimized scheme for allocating reactive current among the STATCOM,DFIG stator,and grid-side converter is proposed.The scheme maximizes the output of active current while satisfying the standard requirements for reactive current output.Com-pared to traditional schemes,the proposed LVRT optimization strategy can output more active power during the LVRT period,effectively suppressing the rate of rotor speed increase,and improving the LVRT performance and fault recov-ery capability of wind farms.Simulation results verify the effectiveness of the proposed scheme.
文摘针对静止同步补偿器(static synchronous compensator,STATCOM)在无功补偿以及抑制电压频繁波动等场景下的优良特性,对STATCOM的V-I输出特性进行详细分析,说明其参与电压控制的原理以及和容抗器相比具有的优越性。为了增大STATCOM的无功裕度,使之有足够的能力应对电力系统可能出现的各种扰动,提出STATCOM接入系统的各种控制模式,以及在稳态电压控制模式下的无功置换策略和远方自动电压控制(automatic voltage control,AVC)模式下的无功置换优化方法。在远方AVC模式下,以STATCOM无功置换后出力最小和容抗器动作次数最少为目标函数,将容抗器投切次数作为罚函数引入到目标函数中,并讨论罚函数系数的确定方法和合理性。结果表明,该无功置换优化模型可以满足调压的同时最大限度地提升STATCOM的无功裕度,同时可以使容抗器的动作次数最少。
文摘为探究频率动态与功角振荡间的耦合特性,文中以双机系统为例推导扰动后系统稳定电网频率动态特性和功角振荡机理,基于扩展等面积准则(extended equal area criterion,EEAC)扩展至多机系统,提出了基于Pearson系数的耦合强度量化评估指标,根据频率动态特征和功角振荡特征对耦合关系进行量化。文中分析了功角振荡对频率动态特征指标的影响,量化评估了不同频率动态指标与功角振荡指标的耦合强度。理论分析和算例结果表明构建的指标体系具有合理性,电力系统的频率动态与功角振荡相互耦合,为频率和功角的优化控制措施提供了参考。
文摘在分析注入式混合有源电力滤波器(injection typehybrid active power filter,IHAPF)工作原理的基础上,从控制的角度提出电压型逆变器的数学模型,在此基础上建立IHAPF的数学模型,对其稳定性和谐波抑制能力进行分析,着重探讨控制器参数对IHAPF稳定性和谐波抑制能力的影响,并提出控制器参数选择方法。仿真和实验结果证明了分析的正确性。