The aviation industry has become one of the top ten greenhouse gas emission industries in the world. China’s aviation carbon emissions continue to increase, but the analysis of its influencing factors at the provinci...The aviation industry has become one of the top ten greenhouse gas emission industries in the world. China’s aviation carbon emissions continue to increase, but the analysis of its influencing factors at the provincial level is still incomplete. This paper firstly uses Stochastic Impacts by Regression on Population, Affluence and Technology model(STIRPAT) model to analyze the time series evolution of China’s aviation carbon emissions from 2000 to 2019. Secondly, it uses the Logarithmic Mean Divisia Index(LDMI) model to analyze the influencing characteristics and degree of four factors on China’s aviation carbon emissions, which are air transportation revenue, aviation route structure, air transportation intensity and aviation energy intensity. Thirdly, it determines the various factors’ influencing direction and evolution trend of 31 provinces’ aviation carbon emissions in China(not including Hong Kong, Macao, Taiwan of China due to incomplete data). Finally, it derives the decoupling effort model and analyzes the decoupling relationship and decoupling effort degree between air carbon emissions and air transportation revenue in different provinces. The study found that from 2000 to2019, China’s total aviation carbon emissions continued to grow, while the growth rate of aviation carbon emissions showed a fluctuating downward trend. Air transportation revenue and aviation route structure promote the growth of total aviation carbon emissions, and air transportation intensity and aviation energy intensity have a restraining effect on the growth of total aviation carbon emissions. The scope of negative driving effect of air transportation revenue and air transportation intensity on total aviation carbon emissions in various provinces has increased. While the scope of positive driving influence of aviation route structure on total aviation carbon emissions of various provinces has increased, aviation energy intensity mainly has negative driving influence on total aviation carbon emissions of each province. Overall, the emission reduction trend in the areas to the west and north of the Qinling-Huaihe River Line is obvious. The decoupling mode between air carbon emissions and air transportation revenue in 31 provinces is mainly expansion negative decoupling.The air transportation intensity effect shows strong decoupling efforts in most provinces, the decoupling effort of aviation route structure effect and aviation energy intensity effect is not prominent.展开更多
[Objective]The study aimed to analyze the influencing factors of low-carbon economy and its mitigation countermeasures in Sichuan Province.[Method]Taking Sichuan Province as an example,an extended STIRPAT model was es...[Objective]The study aimed to analyze the influencing factors of low-carbon economy and its mitigation countermeasures in Sichuan Province.[Method]Taking Sichuan Province as an example,an extended STIRPAT model was established firstly,then the impacts of population,economy and technology on carbon emissions from 2000 to 2009 were analyzed econometrically by using the principal component analysis method.Finally,some corresponding countermeasures to reduce carbon dioxide emissions were put forward.[Result]At present,population scale had the greatest influence on carbon emissions in Sichuan Province,then energy consumption per industrial added value and the proportion of industrial added value to GDP.In addition,the influence of population scale on carbon emissions was still greater than that of population structure,and technical factor also has certain explanatory power on carbon emissions.Some countermeasures,like controlling population growth,advocating low-carbon life style and consumption model,paying more attention to the strategic adjustment of industrial structure to gradually reduce the proportion of high-carbon industries,encouraging energy consumption and emissions reduction plus scientific and technological innovation in a new energy technology filed,could be adopted to reduce carbon dioxide emissions,so as to adjust to the development of low-carbon economy in Sichuan Province.[Conclusion]The research could provide references for the establishment of policies for reducing carbon emissions.展开更多
Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analys...Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.展开更多
To accelerate the achievement of China’s carbon neutrality goal and to study the factors affecting the geologic CO_(2)storage in the Ordos Basin,China’s National Key R&D Programs propose to select the Chang 6 oi...To accelerate the achievement of China’s carbon neutrality goal and to study the factors affecting the geologic CO_(2)storage in the Ordos Basin,China’s National Key R&D Programs propose to select the Chang 6 oil reservoir of the Yanchang Formation in the Ordos Basin as the target reservoir to conduct the geologic carbon capture and storage(CCS)of 100000 t per year.By applying the basic theories of disciplines such as seepage mechanics,multiphase fluid mechanics,and computational fluid mechanics and quantifying the amounts of CO_(2)captured in gas and dissolved forms,this study investigated the effects of seven factors that influence the CO_(2)storage capacity of reservoirs,namely reservoir porosity,horizontal permeability,temperature,formation stress,the ratio of vertical to horizontal permeability,capillary pressure,and residual gas saturation.The results show that the sensitivity of the factors affecting the gas capture capacity of CO_(2)decreases in the order of formation stress,temperature,residual gas saturation,horizontal permeability,and porosity.Meanwhile,the sensitivity of the factors affecting the dissolution capture capacity of CO_(2)decreases in the order of formation stress,residual gas saturation,temperature,horizontal permeability,and porosity.The sensitivity of the influencing factors can serve as the basis for carrying out a reasonable assessment of sites for future CO_(2)storage areas and for optimizing the design of existing CO_(2)storage areas.The sensitivity analysis of the influencing factors will provide basic data and technical support for implementing geologic CO_(2)storage and will assist in improving geologic CO_(2)storage technologies to achieve China’s carbon neutralization goal.展开更多
This paper constructed a carbon emission identity based on five factors: industrial activity, industrial structure, energy inten- sity, energy mix and carbon emission parameter, and analyzed manufacturing carbon emis...This paper constructed a carbon emission identity based on five factors: industrial activity, industrial structure, energy inten- sity, energy mix and carbon emission parameter, and analyzed manufacturing carbon emission trends in Jilin Province at subdivided industrial level through Log-Mean Divisia Index (LMDI) method. Results showed that manufacturing carbon emissions of Jilin Province increased 1.304 ~ 107t by 66% between 2004 and 2010. However, 2012 was a remarkable year in which carbon emissions decreased compared with 2011, the first fall since 2004. Industrial activity was the most important factor for the increase of carbon emissions, while energy intensity had the greatest impact on inhibiting carbon emission growth. Despite the impact of industrial structure on carbon emissions fluctuated, its overall trend inhibited carbon emission growth. Further, influences of industrial structure became gradually stronger and surpassed energy intensity in the period 2009-2010. These results conclude that reducing energy intensity is still the main way for carbon emission reduction in Jilin Province, hut industrial structure can not be ignored and it has great potential. Based on the analyses, the way of manufacturing industrial structure adjustment for Jilin Province is put forward.展开更多
Grasping the spatial correlation structure of transportation carbon emission efficiency(TCEE)and its influencing factors is significant for promoting high-quality and coordinated development of the transportation indu...Grasping the spatial correlation structure of transportation carbon emission efficiency(TCEE)and its influencing factors is significant for promoting high-quality and coordinated development of the transportation industry and the relevant region.Based on the ideal point cross-efficiency(IPCE)model,the social network analysis method was employed herein to explore the spatial correlation network structure of China’s provincial TCEE and its influencing factors.The results obtained showed the following outcomes.(1)During the study period,China’s provincial TCEE formed a complex and multithreaded network association relationship,but its network association structure was still relatively loose and presented the hierarchical gradient characteristics of dense in the east and sparse in the west.(2)The correlation of China’s TCEE formed a block segmentation based on the regional boundaries,and its factional structure was relatively obvious.The eastern region was closely connected with the central region,and generally connected with the western and northeastern regions.The central region was mainly connected with the eastern and western regions,and relatively less connected with the northeastern region.Besides,the northeastern region was weakly connected with the western region.(3)Shanghai,Beijing,Zhejiang,Guangdong,Jiangsu,Tianjin,and other developed provinces were in the core leading position in the TCEE network,which significantly impacted the spatial correlation of TCEE.However,Heilongjiang,Jilin,Xinjiang,Qinghai,and other remote provinces in the northeast and northwest were at the absolute edge of the network,which weakly impacted the spatial correlation of TCEE.(4)Provincial distance,economic development-level difference,transportation intensity difference,and transportation structure difference had significant negative impacts on the spatial correlation network of China’s provincial TCEE.In contrast,the energy-saving technology level difference had a significant positive impact on it.The regression coefficients of transportation energy structure and environmental regulation differences were positive but insignificant;their response mechanism and effects need to be improved and enhanced.展开更多
The international community has taken extensive actions to achieve carbon neutrality and sustainable development with the intensification of global warming and climate change.China has also carried out a long-term lay...The international community has taken extensive actions to achieve carbon neutrality and sustainable development with the intensification of global warming and climate change.China has also carried out a long-term layout,setting the goal of achieving a carbon peak by 2030 and carbon neutrality by 2060.In 2021,with the official launch of a unified national carbon emissions trading market,China’s nationwide carbon emissions trading kicked off.Carbon emission trading is an important policy tool for China’s carbon peak and carbon-neutral action and an essential part of the country’s promotion of a comprehensive green transformation of the economy and society.This study uses a VAR(Vector Autoregressive)model to analyze the influencing factors of the Beijing carbon emissions trading price from January 2014 to December 2019.The study found that coal prices have the most significant impact on Beijing’s carbon emissions trading prices.Oil prices,industrial development indexes,and AQI(Air Quality Index)impacted Beijing’s carbon emissions trading prices.In contrast,natural gas prices and economic indexes have the most negligible impact.These findings will help decision-makers determine a reasonable price for carbon emissions trading and contribute to the market’s healthy development.展开更多
Based on the panel data of Guangxi from 2005 to 2017,the spatiotemporal characteristics and determinants of urban carbon emissions in Guangxi were analyzed using the extended STIRPAT model and the Geographically and T...Based on the panel data of Guangxi from 2005 to 2017,the spatiotemporal characteristics and determinants of urban carbon emissions in Guangxi were analyzed using the extended STIRPAT model and the Geographically and Temporally Weighted Regression(GTWR)model.The main findings of our research can be summarized as follows.While the total carbon emissions of cities in Guangxi consistently increased from 2005 to 2014,the growth trend slowed after 2014,leading to a stabilization in the total emissions.In addition,there are significant differences in the total carbon emissions among the cities.The central and northeastern regions have higher emissions,while the southwestern region has lower emissions.Finally,there are variations in the degrees and directions of the impacts that factors have on carbon emissions among the different time periods and cities.Urban land use is a key factor driving carbon emissions,and it has a negative impact on most cities in Guangxi.Meanwhile,factors such as industrial structure,population urbanization,population concentration,and economic growth have significant positive effects on carbon emissions in Guangxi.The influence of urban roads on carbon emissions is generally positive,while the degree of openness to the outside world and environmental regulations has relatively weaker impacts on emissions.In summary,in order to promote the low-carbon transition of Guangxi and achieve high-quality development,the cities in Guangxi should implement differentiated urban carbon reduction strategies that are focused on optimizing urban land use and industrial structure.展开更多
This paper calculates the industrial carbon emissions of the Yangtze River Delta urban agglomeration over the period 2006-2013. An empirical analysis is conducted to find out the influencing factors of industrial carb...This paper calculates the industrial carbon emissions of the Yangtze River Delta urban agglomeration over the period 2006-2013. An empirical analysis is conducted to find out the influencing factors of industrial carbon emissions of the Yangtze River Delta urban agglomeration, using a spatial Durbin panel model. The results show that cities with larger industrial carbon emissions often enjoy low annual growth rates, while the cities with smaller ones enjoy higher annual growth rate; There exists a comparatively strong positive correlation in space in per capita carbon emission; urbanization, and total population. GDP per capita and international trade are the main influencing factors of industrial carbon emissions; There are spatial spillover effects on international trade and urbanization of neighboring cities, which have a significant impact on local industrial carbon emissions.展开更多
Reducing CO_(2)emissions of the iron and steel industry,a typical heavy CO_(2)-emitting sector is the only way that must be passed to achieve the‘dual-carbon’goal,especially in China.In previous studies,however,it i...Reducing CO_(2)emissions of the iron and steel industry,a typical heavy CO_(2)-emitting sector is the only way that must be passed to achieve the‘dual-carbon’goal,especially in China.In previous studies,however,it is still unknown what is the difference between blast furnace basic oxygen furnace(BF-BOF),scrap-electric furnace(scrap-EF)and hydrogen metallurgy process.The quantitative research on the key factors affecting CO_(2)emissions is insufficient There is also a lack of research on the prediction of CO_(2)emissions by adjusting industria structure.Based on material flow analysis,this study establishes carbon flow diagrams o three processes,and then analyze the key factors affecting CO_(2)emissions.CO_(2)emissions of the iron and steel industry in the future is predicted by adjusting industrial structure The results show that:(1)The CO_(2)emissions of BF-BOF,scrap-EF and hydrogen metallurgy process in a site are 1417.26,542.93 and 1166.52 kg,respectively.(2)By increasing pellet ratio in blast furnace,scrap ratio in electric furnace,etc.,can effectively reduce CO_(2)emissions(3)Reducing the crude steel output is the most effective CO_(2)reduction measure.There is still 5.15×10^(8)-6.17×10^(8) tons of CO_(2)that needs to be reduced by additional measures.展开更多
The research on the influencing factors of carbon emissions from urban buildings is of great significance for the reduction of carbon in the urban building sector and even the realization of the city’s the carbon pea...The research on the influencing factors of carbon emissions from urban buildings is of great significance for the reduction of carbon in the urban building sector and even the realization of the city’s the carbon peak and neutrality goals.In this paper,combined with the ridge regression method,the STIRPAT model is used to establish a new model for influencing factors of building carbon emissions in Suzhou,and the factors such as urbanization rate,the number of permanent residents,per capita construction and tertiary industry added value,and per capita disposable income are analyzed.The analysis results show that the urbanization rate is the primary driving factor for building carbon emissions in Suzhou,followed by the number of permanent residents,then the added value of the per capita construction industry and tertiary industry,and finally the per capita disposable income.The conclusions of this paper indicate that industrialization and urbanization have strongly promoted the growth of building carbon emissions in Suzhou.In the future,with the continuous development of industrialization and urbanization and the increase of population,Suzhou City can rationally plan urban development boundaries to promote green and low-carbon transformation and development in the field of urban and rural construction,improve residents’low-carbon awareness,and advocate green and low-carbon behavior of residents to reduce building carbon emissions.展开更多
Agricultural pollution has become the dominant source of water pollution in China and the carbon reduction in agricultural aspect is pressing.Based on list analysis method,the COD,TN and TP in agriculture in 28 provin...Agricultural pollution has become the dominant source of water pollution in China and the carbon reduction in agricultural aspect is pressing.Based on list analysis method,the COD,TN and TP in agriculture in 28 provinces in China from 1995 to 2010 were evaluated and compared.By dint of directional distance function,the economics mechanism to reduce carbon emission was discussed.The reduction efficiency and potential of three kinds of pollutants were estimated.The regression indicates that the educational degree,income level and work play a crucial role in carbon emission.展开更多
Analysis of carbon emission mechanism based on regional perspectives is an im- portant research method capable of achieving energy savings and emission reductions. Xin- jiang, an important Chinese energy production ba...Analysis of carbon emission mechanism based on regional perspectives is an im- portant research method capable of achieving energy savings and emission reductions. Xin- jiang, an important Chinese energy production base, is currently going through a period of strategic opportunities for rapid development. Ensuring stable socio-economic development while achieving energy savings and meeting emission reductions targets, is the key issue currently facing the region. This paper is based on the input-output theory, and conducts a structural decomposition analysis on the factors affecting energy-related carbon emissions in Xinjiang from 1997 to 2007; this analysis employs a hybrid input-output analysis framework of "energy - economy - carbon emissions". (1) Xinjiang's carbon emissions from energy con- sumption increased from 20.70 million tons in 1997 to 40.34 million tons in 2007; carbon emissions growth was mainly concentrated in the production and processing of energy re- sources, the mining of mineral resources, and the processing industry. (2) The analysis of the direct effects of the influencing factors on carbon emissions showed that the change in per capita GDP, the final demand structure, the population scale, and the production structure were the important factors causing an increase in carbon emissions, while the decrease in carbon emission intensity during this period was the important influencing factor in stopping the growth of carbon emissions. This showed that while the sizes of Xinjiang's economy and population were growing, the economic structure had not been effectively optimized and the production technology had not been efficiently improved, resulting in a rapid growth of carbon emissions from energy consumption. (3) The analysis of the indirect effects of the influencing factors of carbon emission showed that the inter-provincial export, fixed capital formation, and the consumption by urban residents had significant influence on the changes in carbon emissions from energy consumption in Xinjiang. (4) The growth of investments in fixed assets of carbon intensive industry sectors, in addition to the growth of inter-provincial exports ofenergy resource products, makes the transfer effect of inter-provincial "embodied carbon" very significant.展开更多
This essay combines the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)nighttime light data and the Visible Infrared Imaging Radiometer Suite(VIIRS)nighttime light data into a“synthetic...This essay combines the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)nighttime light data and the Visible Infrared Imaging Radiometer Suite(VIIRS)nighttime light data into a“synthetic DMSP”dataset,from 1992 to 2020,to retrieve the spatio-temporal variations in energy-related carbon emissions in Xinjiang,China.Then,this paper analyzes several influencing factors for spatial differentiation of carbon emissions in Xinjiang with the application of geographical detector technique.Results reveal that(1)total carbon emissions continued to grow,while the growth rate slowed down in the past five years.(2)Large regional differences exist in total carbon emissions across various regions.Total carbon emissions of these regions in descending order are the northern slope of the Tianshan(Mountains)>the southern slope of the Tianshan>the three prefectures in southern Xinjiang>the northern part of Xinjiang.(3)Economic growth,population size,and energy consumption intensity are the most important factors of spatial differentiation of carbon emissions.The interaction between economic growth and population size as well as between economic growth and energy consumption intensity also enhances the explanatory power of carbon emissions’spatial differentiation.This paper aims to help formulate differentiated carbon reduction targets and strategies for cities in different economic development stages and those with different carbon intensities so as to achieve the carbon peak goals in different steps.展开更多
基金Under the auspices of the National Natural Science Foundation of China(No.42071266)the Third Batch of Hebei Youth Top Talent ProjectNatural Science Foundation of Hebei Province(No.D2021205003)。
文摘The aviation industry has become one of the top ten greenhouse gas emission industries in the world. China’s aviation carbon emissions continue to increase, but the analysis of its influencing factors at the provincial level is still incomplete. This paper firstly uses Stochastic Impacts by Regression on Population, Affluence and Technology model(STIRPAT) model to analyze the time series evolution of China’s aviation carbon emissions from 2000 to 2019. Secondly, it uses the Logarithmic Mean Divisia Index(LDMI) model to analyze the influencing characteristics and degree of four factors on China’s aviation carbon emissions, which are air transportation revenue, aviation route structure, air transportation intensity and aviation energy intensity. Thirdly, it determines the various factors’ influencing direction and evolution trend of 31 provinces’ aviation carbon emissions in China(not including Hong Kong, Macao, Taiwan of China due to incomplete data). Finally, it derives the decoupling effort model and analyzes the decoupling relationship and decoupling effort degree between air carbon emissions and air transportation revenue in different provinces. The study found that from 2000 to2019, China’s total aviation carbon emissions continued to grow, while the growth rate of aviation carbon emissions showed a fluctuating downward trend. Air transportation revenue and aviation route structure promote the growth of total aviation carbon emissions, and air transportation intensity and aviation energy intensity have a restraining effect on the growth of total aviation carbon emissions. The scope of negative driving effect of air transportation revenue and air transportation intensity on total aviation carbon emissions in various provinces has increased. While the scope of positive driving influence of aviation route structure on total aviation carbon emissions of various provinces has increased, aviation energy intensity mainly has negative driving influence on total aviation carbon emissions of each province. Overall, the emission reduction trend in the areas to the west and north of the Qinling-Huaihe River Line is obvious. The decoupling mode between air carbon emissions and air transportation revenue in 31 provinces is mainly expansion negative decoupling.The air transportation intensity effect shows strong decoupling efforts in most provinces, the decoupling effort of aviation route structure effect and aviation energy intensity effect is not prominent.
文摘[Objective]The study aimed to analyze the influencing factors of low-carbon economy and its mitigation countermeasures in Sichuan Province.[Method]Taking Sichuan Province as an example,an extended STIRPAT model was established firstly,then the impacts of population,economy and technology on carbon emissions from 2000 to 2009 were analyzed econometrically by using the principal component analysis method.Finally,some corresponding countermeasures to reduce carbon dioxide emissions were put forward.[Result]At present,population scale had the greatest influence on carbon emissions in Sichuan Province,then energy consumption per industrial added value and the proportion of industrial added value to GDP.In addition,the influence of population scale on carbon emissions was still greater than that of population structure,and technical factor also has certain explanatory power on carbon emissions.Some countermeasures,like controlling population growth,advocating low-carbon life style and consumption model,paying more attention to the strategic adjustment of industrial structure to gradually reduce the proportion of high-carbon industries,encouraging energy consumption and emissions reduction plus scientific and technological innovation in a new energy technology filed,could be adopted to reduce carbon dioxide emissions,so as to adjust to the development of low-carbon economy in Sichuan Province.[Conclusion]The research could provide references for the establishment of policies for reducing carbon emissions.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ01A13-2) supported by the National Key Technologies R & D Program of China
文摘Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.
基金jointly supported by the National Key R&D Program of China (2018YFB0605503)the National Natural Science Foundation of China (51804112)+2 种基金the National Key R&D Program of China (2018YFC0807801)the Open Foundation of Key Laboratory of Coal Exploration and Comprehensive Utilization of Ministry of Natural Resources (KF2021-5)the Natural Science Foundation of Hunan Province of China (2018JJ3169).
文摘To accelerate the achievement of China’s carbon neutrality goal and to study the factors affecting the geologic CO_(2)storage in the Ordos Basin,China’s National Key R&D Programs propose to select the Chang 6 oil reservoir of the Yanchang Formation in the Ordos Basin as the target reservoir to conduct the geologic carbon capture and storage(CCS)of 100000 t per year.By applying the basic theories of disciplines such as seepage mechanics,multiphase fluid mechanics,and computational fluid mechanics and quantifying the amounts of CO_(2)captured in gas and dissolved forms,this study investigated the effects of seven factors that influence the CO_(2)storage capacity of reservoirs,namely reservoir porosity,horizontal permeability,temperature,formation stress,the ratio of vertical to horizontal permeability,capillary pressure,and residual gas saturation.The results show that the sensitivity of the factors affecting the gas capture capacity of CO_(2)decreases in the order of formation stress,temperature,residual gas saturation,horizontal permeability,and porosity.Meanwhile,the sensitivity of the factors affecting the dissolution capture capacity of CO_(2)decreases in the order of formation stress,residual gas saturation,temperature,horizontal permeability,and porosity.The sensitivity of the influencing factors can serve as the basis for carrying out a reasonable assessment of sites for future CO_(2)storage areas and for optimizing the design of existing CO_(2)storage areas.The sensitivity analysis of the influencing factors will provide basic data and technical support for implementing geologic CO_(2)storage and will assist in improving geologic CO_(2)storage technologies to achieve China’s carbon neutralization goal.
基金Under the auspices of National Natural Science Foundation of China(No.41371135)Jilin Province Science and Technology Guide Plan Soft Science Project(No.20120635)
文摘This paper constructed a carbon emission identity based on five factors: industrial activity, industrial structure, energy inten- sity, energy mix and carbon emission parameter, and analyzed manufacturing carbon emission trends in Jilin Province at subdivided industrial level through Log-Mean Divisia Index (LMDI) method. Results showed that manufacturing carbon emissions of Jilin Province increased 1.304 ~ 107t by 66% between 2004 and 2010. However, 2012 was a remarkable year in which carbon emissions decreased compared with 2011, the first fall since 2004. Industrial activity was the most important factor for the increase of carbon emissions, while energy intensity had the greatest impact on inhibiting carbon emission growth. Despite the impact of industrial structure on carbon emissions fluctuated, its overall trend inhibited carbon emission growth. Further, influences of industrial structure became gradually stronger and surpassed energy intensity in the period 2009-2010. These results conclude that reducing energy intensity is still the main way for carbon emission reduction in Jilin Province, hut industrial structure can not be ignored and it has great potential. Based on the analyses, the way of manufacturing industrial structure adjustment for Jilin Province is put forward.
基金This research was funded by the National Science Foundation under the Project“Synergic evolution mechanism of intercity transportation and metropolitan tourism spatial pattern”[Grant number.41771162]It was also funded by the National First-Class Discipline Development Project in Hunan Province under the category of“Geography”[Grang number.510002].
文摘Grasping the spatial correlation structure of transportation carbon emission efficiency(TCEE)and its influencing factors is significant for promoting high-quality and coordinated development of the transportation industry and the relevant region.Based on the ideal point cross-efficiency(IPCE)model,the social network analysis method was employed herein to explore the spatial correlation network structure of China’s provincial TCEE and its influencing factors.The results obtained showed the following outcomes.(1)During the study period,China’s provincial TCEE formed a complex and multithreaded network association relationship,but its network association structure was still relatively loose and presented the hierarchical gradient characteristics of dense in the east and sparse in the west.(2)The correlation of China’s TCEE formed a block segmentation based on the regional boundaries,and its factional structure was relatively obvious.The eastern region was closely connected with the central region,and generally connected with the western and northeastern regions.The central region was mainly connected with the eastern and western regions,and relatively less connected with the northeastern region.Besides,the northeastern region was weakly connected with the western region.(3)Shanghai,Beijing,Zhejiang,Guangdong,Jiangsu,Tianjin,and other developed provinces were in the core leading position in the TCEE network,which significantly impacted the spatial correlation of TCEE.However,Heilongjiang,Jilin,Xinjiang,Qinghai,and other remote provinces in the northeast and northwest were at the absolute edge of the network,which weakly impacted the spatial correlation of TCEE.(4)Provincial distance,economic development-level difference,transportation intensity difference,and transportation structure difference had significant negative impacts on the spatial correlation network of China’s provincial TCEE.In contrast,the energy-saving technology level difference had a significant positive impact on it.The regression coefficients of transportation energy structure and environmental regulation differences were positive but insignificant;their response mechanism and effects need to be improved and enhanced.
基金financially supported by the National Natural Sciences Foundation of China(NSFC-71672009.71972011).
文摘The international community has taken extensive actions to achieve carbon neutrality and sustainable development with the intensification of global warming and climate change.China has also carried out a long-term layout,setting the goal of achieving a carbon peak by 2030 and carbon neutrality by 2060.In 2021,with the official launch of a unified national carbon emissions trading market,China’s nationwide carbon emissions trading kicked off.Carbon emission trading is an important policy tool for China’s carbon peak and carbon-neutral action and an essential part of the country’s promotion of a comprehensive green transformation of the economy and society.This study uses a VAR(Vector Autoregressive)model to analyze the influencing factors of the Beijing carbon emissions trading price from January 2014 to December 2019.The study found that coal prices have the most significant impact on Beijing’s carbon emissions trading prices.Oil prices,industrial development indexes,and AQI(Air Quality Index)impacted Beijing’s carbon emissions trading prices.In contrast,natural gas prices and economic indexes have the most negligible impact.These findings will help decision-makers determine a reasonable price for carbon emissions trading and contribute to the market’s healthy development.
基金The Guangxi Key Research and Development Program(AB22035060)The National Natural Science Foundation of China(32060369)+1 种基金TheGuangxi Academy of Sciences Basic Scientific Research Operation Fund Project(2019YJJ1009CQZ-D-1904).
文摘Based on the panel data of Guangxi from 2005 to 2017,the spatiotemporal characteristics and determinants of urban carbon emissions in Guangxi were analyzed using the extended STIRPAT model and the Geographically and Temporally Weighted Regression(GTWR)model.The main findings of our research can be summarized as follows.While the total carbon emissions of cities in Guangxi consistently increased from 2005 to 2014,the growth trend slowed after 2014,leading to a stabilization in the total emissions.In addition,there are significant differences in the total carbon emissions among the cities.The central and northeastern regions have higher emissions,while the southwestern region has lower emissions.Finally,there are variations in the degrees and directions of the impacts that factors have on carbon emissions among the different time periods and cities.Urban land use is a key factor driving carbon emissions,and it has a negative impact on most cities in Guangxi.Meanwhile,factors such as industrial structure,population urbanization,population concentration,and economic growth have significant positive effects on carbon emissions in Guangxi.The influence of urban roads on carbon emissions is generally positive,while the degree of openness to the outside world and environmental regulations has relatively weaker impacts on emissions.In summary,in order to promote the low-carbon transition of Guangxi and achieve high-quality development,the cities in Guangxi should implement differentiated urban carbon reduction strategies that are focused on optimizing urban land use and industrial structure.
基金supported by National Natural Science Foundation of China (Grant No.71373079)Planning Projects of Philosophy and Social Science of Zhejiang Province (Grant No. 11YD07Z)
文摘This paper calculates the industrial carbon emissions of the Yangtze River Delta urban agglomeration over the period 2006-2013. An empirical analysis is conducted to find out the influencing factors of industrial carbon emissions of the Yangtze River Delta urban agglomeration, using a spatial Durbin panel model. The results show that cities with larger industrial carbon emissions often enjoy low annual growth rates, while the cities with smaller ones enjoy higher annual growth rate; There exists a comparatively strong positive correlation in space in per capita carbon emission; urbanization, and total population. GDP per capita and international trade are the main influencing factors of industrial carbon emissions; There are spatial spillover effects on international trade and urbanization of neighboring cities, which have a significant impact on local industrial carbon emissions.
基金supported by the National Natural Science Foundation of China(No.52270177)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)the Key R&D Plan of Liaoning Province(No.2021JH2/10300103)。
文摘Reducing CO_(2)emissions of the iron and steel industry,a typical heavy CO_(2)-emitting sector is the only way that must be passed to achieve the‘dual-carbon’goal,especially in China.In previous studies,however,it is still unknown what is the difference between blast furnace basic oxygen furnace(BF-BOF),scrap-electric furnace(scrap-EF)and hydrogen metallurgy process.The quantitative research on the key factors affecting CO_(2)emissions is insufficient There is also a lack of research on the prediction of CO_(2)emissions by adjusting industria structure.Based on material flow analysis,this study establishes carbon flow diagrams o three processes,and then analyze the key factors affecting CO_(2)emissions.CO_(2)emissions of the iron and steel industry in the future is predicted by adjusting industrial structure The results show that:(1)The CO_(2)emissions of BF-BOF,scrap-EF and hydrogen metallurgy process in a site are 1417.26,542.93 and 1166.52 kg,respectively.(2)By increasing pellet ratio in blast furnace,scrap ratio in electric furnace,etc.,can effectively reduce CO_(2)emissions(3)Reducing the crude steel output is the most effective CO_(2)reduction measure.There is still 5.15×10^(8)-6.17×10^(8) tons of CO_(2)that needs to be reduced by additional measures.
基金supported by he National Natural Science Foundation of China(No.72140003).
文摘The research on the influencing factors of carbon emissions from urban buildings is of great significance for the reduction of carbon in the urban building sector and even the realization of the city’s the carbon peak and neutrality goals.In this paper,combined with the ridge regression method,the STIRPAT model is used to establish a new model for influencing factors of building carbon emissions in Suzhou,and the factors such as urbanization rate,the number of permanent residents,per capita construction and tertiary industry added value,and per capita disposable income are analyzed.The analysis results show that the urbanization rate is the primary driving factor for building carbon emissions in Suzhou,followed by the number of permanent residents,then the added value of the per capita construction industry and tertiary industry,and finally the per capita disposable income.The conclusions of this paper indicate that industrialization and urbanization have strongly promoted the growth of building carbon emissions in Suzhou.In the future,with the continuous development of industrialization and urbanization and the increase of population,Suzhou City can rationally plan urban development boundaries to promote green and low-carbon transformation and development in the field of urban and rural construction,improve residents’low-carbon awareness,and advocate green and low-carbon behavior of residents to reduce building carbon emissions.
基金Supported by National Natural Science Fundation(71103057)Anhui Natural Science Fundation(11040606Q29)Major Project of National Philosophy and Social Science(08ZD&043)
文摘Agricultural pollution has become the dominant source of water pollution in China and the carbon reduction in agricultural aspect is pressing.Based on list analysis method,the COD,TN and TP in agriculture in 28 provinces in China from 1995 to 2010 were evaluated and compared.By dint of directional distance function,the economics mechanism to reduce carbon emission was discussed.The reduction efficiency and potential of three kinds of pollutants were estimated.The regression indicates that the educational degree,income level and work play a crucial role in carbon emission.
基金National Natural Science Foundation of China, No.41501144 National Key Research and Development Program, No.2016YFA0602801+2 种基金 Guangdong Academy of Sciences Youth Science Foundation, No.qn.ij201501 High-level Leading Talent Introduction Program of GDAS, No.2016GDASRC-0101 Scientific Platform and Innovation Capability Construction Program of GDAS, No.2016GDASPT-0210.
文摘Analysis of carbon emission mechanism based on regional perspectives is an im- portant research method capable of achieving energy savings and emission reductions. Xin- jiang, an important Chinese energy production base, is currently going through a period of strategic opportunities for rapid development. Ensuring stable socio-economic development while achieving energy savings and meeting emission reductions targets, is the key issue currently facing the region. This paper is based on the input-output theory, and conducts a structural decomposition analysis on the factors affecting energy-related carbon emissions in Xinjiang from 1997 to 2007; this analysis employs a hybrid input-output analysis framework of "energy - economy - carbon emissions". (1) Xinjiang's carbon emissions from energy con- sumption increased from 20.70 million tons in 1997 to 40.34 million tons in 2007; carbon emissions growth was mainly concentrated in the production and processing of energy re- sources, the mining of mineral resources, and the processing industry. (2) The analysis of the direct effects of the influencing factors on carbon emissions showed that the change in per capita GDP, the final demand structure, the population scale, and the production structure were the important factors causing an increase in carbon emissions, while the decrease in carbon emission intensity during this period was the important influencing factor in stopping the growth of carbon emissions. This showed that while the sizes of Xinjiang's economy and population were growing, the economic structure had not been effectively optimized and the production technology had not been efficiently improved, resulting in a rapid growth of carbon emissions from energy consumption. (3) The analysis of the indirect effects of the influencing factors of carbon emission showed that the inter-provincial export, fixed capital formation, and the consumption by urban residents had significant influence on the changes in carbon emissions from energy consumption in Xinjiang. (4) The growth of investments in fixed assets of carbon intensive industry sectors, in addition to the growth of inter-provincial exports ofenergy resource products, makes the transfer effect of inter-provincial "embodied carbon" very significant.
基金The Third Xinjiang Scientific Expedition Program(2021xjkk0905)GDAS Special Project of Science and Technology Development(2020GDASYL-20200301003)+2 种基金GDAS Special Project of Science and Technology Development(2020GDASYL-20200102002)National Natural Science Foundation of China(41501144)Project of Department of Natural Resources of Guangdong Province(GDZRZYKJ2022005)。
文摘This essay combines the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)nighttime light data and the Visible Infrared Imaging Radiometer Suite(VIIRS)nighttime light data into a“synthetic DMSP”dataset,from 1992 to 2020,to retrieve the spatio-temporal variations in energy-related carbon emissions in Xinjiang,China.Then,this paper analyzes several influencing factors for spatial differentiation of carbon emissions in Xinjiang with the application of geographical detector technique.Results reveal that(1)total carbon emissions continued to grow,while the growth rate slowed down in the past five years.(2)Large regional differences exist in total carbon emissions across various regions.Total carbon emissions of these regions in descending order are the northern slope of the Tianshan(Mountains)>the southern slope of the Tianshan>the three prefectures in southern Xinjiang>the northern part of Xinjiang.(3)Economic growth,population size,and energy consumption intensity are the most important factors of spatial differentiation of carbon emissions.The interaction between economic growth and population size as well as between economic growth and energy consumption intensity also enhances the explanatory power of carbon emissions’spatial differentiation.This paper aims to help formulate differentiated carbon reduction targets and strategies for cities in different economic development stages and those with different carbon intensities so as to achieve the carbon peak goals in different steps.