In the light of current fast development of new and expanded copper foil projects of electronic copper foil enterprises and recent adjustment of the main copper foil categories set to be developed by some companies(ge...In the light of current fast development of new and expanded copper foil projects of electronic copper foil enterprises and recent adjustment of the main copper foil categories set to be developed by some companies(generally from lithium foil to PCB foil).The secretariat of China Electronics Materials Industry Association e-copper foil branch conducted in March,2017 an extensive and in-depth展开更多
Pulsed dielectric barrier discharge is a promising technology for ozone generation and is drawing increasing interest. To overcome the drawback of experimental investigation, a kinetic model is applied to numerically ...Pulsed dielectric barrier discharge is a promising technology for ozone generation and is drawing increasing interest. To overcome the drawback of experimental investigation, a kinetic model is applied to numerically investigate the effect of gas parameters including inlet gas temperature, gas pressure, and gas flow rate on ozone generation using pulsed dielectric barrier discharge. The results show that ozone concentration and ozone yield increase with decreasing inlet gas temperature, gas pressure, and gas flow rate. The highest ozone concentration and ozone yield in oxygen are about 1.8 and 2.5 times higher than those in air, respectively. A very interesting phenomenon is observed: the peak ozone yield occurs at a lower ozone concentration when the inlet gas temperature and gas pressure are higher because of the increasing average gas temperature in the discharge gap as well as the decreasing reduced electric field and electron density in the microdischarge channel. Furthermore, the sensitivity and rate of production analysis based on the specific input energy (SIE) for the four most important species 03, O, O(1D), and O2(b1∑) are executed to quantitatively understand the effects of every reaction on them, and to determine the contribution of individual reactions to their net production or destruction rates. A reasonable increase in SIE is beneficial to ozone generation. However, excessively high S1E is not favorable for ozone production.展开更多
文摘In the light of current fast development of new and expanded copper foil projects of electronic copper foil enterprises and recent adjustment of the main copper foil categories set to be developed by some companies(generally from lithium foil to PCB foil).The secretariat of China Electronics Materials Industry Association e-copper foil branch conducted in March,2017 an extensive and in-depth
基金supported by National Natural Science Foundation of China(Nos.51867018 and 51366012)Natural Science Foundation for Distinguished Young Scholars of Jiangxi Province,China(No.2018ACB21011)
文摘Pulsed dielectric barrier discharge is a promising technology for ozone generation and is drawing increasing interest. To overcome the drawback of experimental investigation, a kinetic model is applied to numerically investigate the effect of gas parameters including inlet gas temperature, gas pressure, and gas flow rate on ozone generation using pulsed dielectric barrier discharge. The results show that ozone concentration and ozone yield increase with decreasing inlet gas temperature, gas pressure, and gas flow rate. The highest ozone concentration and ozone yield in oxygen are about 1.8 and 2.5 times higher than those in air, respectively. A very interesting phenomenon is observed: the peak ozone yield occurs at a lower ozone concentration when the inlet gas temperature and gas pressure are higher because of the increasing average gas temperature in the discharge gap as well as the decreasing reduced electric field and electron density in the microdischarge channel. Furthermore, the sensitivity and rate of production analysis based on the specific input energy (SIE) for the four most important species 03, O, O(1D), and O2(b1∑) are executed to quantitatively understand the effects of every reaction on them, and to determine the contribution of individual reactions to their net production or destruction rates. A reasonable increase in SIE is beneficial to ozone generation. However, excessively high S1E is not favorable for ozone production.