In order to evaluate the effects of structural control and energy transition for the base-isolation with energy transducer (BIET), shaking table tests on a steel frame model (BIET system) with scale of 1:4 were c...In order to evaluate the effects of structural control and energy transition for the base-isolation with energy transducer (BIET), shaking table tests on a steel frame model (BIET system) with scale of 1:4 were conducted and the results were compared with the lead rubber beating (LRB) isolation system for the same model. Then numerical analysis of the system was carried out, in which the improved Wen analytic model was used to simulate the hysteretic law of transducers. The results show that the structural system can transform the partial earthquake energy to hydraulic energy ; furthermore, the effect of structural control can reach or be close to that of the LRB isolation system. The agreements between numerical analysis results and those of shaking table tests demonstrate the accuracy of the numerical model.展开更多
In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the co...In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy(SEM)and energy-dispersive X-ray spectrome-try(EDS).The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials.Compared with ordinary cement-based composites(OCCs),the SFRCCs demonstrate higher post-peak strength,ductility,and energy absorption capacity with higher fiber content.Moreover,the SFRCCs are strain rate sensitive materials,and their peak stress,ultimate strain,and energy integrals all increase with increasing strain rate.From the perspective of fracture failure characteristics,the failure of OCCs is dominated by the brittle failure of crystal cleavage.In contrast,the failure mode of the SFRCCs changes to microscale matrix cracks,multi-scale pull-out interface debonding of fibers(fine filaments and bundles),and mechanical interlock.This research provides an experimental basis for the engineering application of high-performance and green cement-based composites.展开更多
In all convective heat transfer situations, losses occur in the flow field (by dissipation) as well as in the temperature field (by conduction). Typically these losses are more or less quantified by the friction f...In all convective heat transfer situations, losses occur in the flow field (by dissipation) as well as in the temperature field (by conduction). Typically these losses are more or less quantified by the friction factorfwith respect to losses in the flow field, and the Nusselt number Nu for the heat transfer quality. Assessing the process of convective heat transfer as a whole, then becomes problematic because two different non-dimensional quantities, f and Nu, have to be combined somehow. From a thermodynamics point of view, there is a reasonable alternative: Since all losses become manifest in corresponding entropy generation rates, these rates are determined in the velocity as well as in the temperature field. Based on the integration of the entropy generation fields, an energy devaluation number is introduced. It basically determines how much oftbe so-called entropic potential of the energy involved in a convective heat transfer process is used within it. This approach is called SLA (second law analysis).展开更多
The similitude theory helps to understand the physical behaviors of large structures through scaled models. Several papers have studied the similitude of shock issues. However, the dynamic similitude for shock respons...The similitude theory helps to understand the physical behaviors of large structures through scaled models. Several papers have studied the similitude of shock issues. However, the dynamic similitude for shock responses of coupled structures is rarely incorporated in open studies. In this paper, scaling laws are derived for the shock responses and spectra of coupled structures. In the presented scaling laws, the geometric distortion and energy loss are considered. The ability of the proposed scaling laws is demonstrated in the simulation and experimental cases. In both cases, the similitude prediction for the prototype's time-domain waveform and spectrum is conducted with the scaled model and scaling laws. The simulation and experimental cases indicate that the predicted shock responses and spectra agree well with those of the prototype, which verifies the proposed scaling laws for predicting shock responses.展开更多
For investigation of equilibrium conditions of electrons in an atom, and Ionization Energies of Elements, a simplified deterministic static model is proposed. The electrons are initially uniformly and sparsely arrange...For investigation of equilibrium conditions of electrons in an atom, and Ionization Energies of Elements, a simplified deterministic static model is proposed. The electrons are initially uniformly and sparsely arranged on the outer surface of nucleus. Then, by taking into account the nucleus-electron interaction (attractive and repulsive) and the mutual electron-electron repulsions, and by a simple step-by-step nonlinear static analysis program, all the electrons are found to equilibrate on the outer surface of the same sphere, which is concentric and larger than nucleus. In a second stage, starting from an equilibrium sphere of electrons, one of the electrons is subjected to gradual forced removal, radially and outwards with respect to nucleus. Within each removal step, the produced work increment is determined and the increments are summed. When no more significant attraction is exerted by nucleus to removed electron, the total work gives the Ionization Energy. After removing of single electron, the remaining electrons fall on a lower shell, that is, they equilibrate on the outer surface of a smaller concentric sphere. For nucleus-electron interaction, an L-J (Lennard-Jones) type curve, attractive and repulsive, is adopted. When the parameter of this curve is n > 1.0, the Ionization Energy exhibits an upper bound. As parameter n increases from 1.0 up to 2.0, the attractive potential of L-J curve is gradually weakened. The proposed model is applied on Argon. It is observed that, as the number of electrons increases, the radius of equilibrium sphere increases, too, whereas the attractive nucleus-electron potential is reduced;thus the Ionization Energy is reduced, too. Particularly, as the number of electrons and the radius of equilibrium sphere exceed some critical values, the above two last quantities exhibit abrupt falls. A regular polyhedron is revealed, which can accommodate Elements up to atomic number Z = 146, that is 28 more than Z = 118 of existing last Element, as guide for initial locations of electrons in the above first program.展开更多
The present paper describes the energy analysis of a regenerative vapour power system. The regenerative steam turbines based on the Rankine cycle and comprised of vapour extractions have been used industrially since t...The present paper describes the energy analysis of a regenerative vapour power system. The regenerative steam turbines based on the Rankine cycle and comprised of vapour extractions have been used industrially since the beginning of the 20th century, particularly regarding the processes of electrical production. After having performed worked in the first stages of the turbine, part of the vapour is directed toward a regenerative exchanger and heats feedwater coming from the condenser. This process is known as regeneration, and the heat exchanger where the heat is transferred from steam is called a regenerator (or a feedwater heater). The profit in the output brought by regenerative rakings is primarily enabled by the lack of exchange of the tapped vapour reheating water with the low-temperature reservoir. The economic optimum is often fixed at seven extractions. One knows the Carnot relation, which is the best possible theoretical yield of a dual-temperature cycle;in a Carnot cycle, one makes the assumption that both compressions and expansions are isentropic. This article studies an ideal theoretical machine comprised of vapour extractions in which each cycle partial of tapped vapour obeys these same compressions and isentropic expansions.展开更多
In the present article,we perform the second law analysis of classical Blasius flow accounting the effects of nonlinear radiation and frictional heating.The two-dimensional boundary layer momentum and energy equations...In the present article,we perform the second law analysis of classical Blasius flow accounting the effects of nonlinear radiation and frictional heating.The two-dimensional boundary layer momentum and energy equations are converted to self-similar equations using similarity transformations.The set of resultant ordinary differential equations are solved numerically.The numerical results obtained from solutions of dimensionless momentum and energy equations are used to calculate the entropy generation number and Bejan number.The velocity profile f'(ξ),temperature distributionθ(ξ),entropy production number Ns and Bejan number Be are plotted against the physical flow parameters and are discussed in detail.Further,for the sake of validation of our numerical code,the obtained results are reproduced using Matlab built-in boundary value solver bvp4c resulting in an excellent agreement.It is observed that entropy generation is increasing function of heating parameter,Prandtl number,Eckert number and radiation parameter.Further,it is observed that entropy generation can be minimized by reducing the operating temperatureΔT=T_(w)−T_(∞).展开更多
A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential tha...A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the equations. The merit of the proposed scheme is that the local energy conservation law can hold exactly in any time-space region. With the periodic boundary conditions, the scheme also possesses the discrete change and global energy conservation laws. A nonlinear analysis shows that the LEP scheme converges to the exact solutions with order O(τ2 + h2). The theoretical properties are verified by numerical experiments.展开更多
The Internet presents numerous sources of useful information nowadays. However, these resources are drowning under the dynamic Web, so accurate finding user-specific information is very difficult. In this paper we dis...The Internet presents numerous sources of useful information nowadays. However, these resources are drowning under the dynamic Web, so accurate finding user-specific information is very difficult. In this paper we discuss a Semantic Graph Web Search (SGWS) algorithm in topic-specific resource discovery on the Web. This method combines the use of hyperlinks, characteristics of Web graph and semantic term weights. We implement the algorithm to find Chinese medical information from the Internet. Our study showed that it has better precision than traditional IR (Information Retrieval) methods and traditional search engines. Key words HITS - evolution web graph - power law distribution - context analysis CLC number TP 391 - TP 393 Foundation item: Supported by the National High-Performance Computation Fund (00303)Biography: Ye Wei-guo (1970-), male, Ph. D candidate, research direction: Web information mining, network security, artificial intelligence.展开更多
在建筑上安装光伏是建筑业降碳减碳最有效的途径,了解国内外光伏建筑的发展动态对我国部署光伏具有重大意义。对Web of Science中的核心合集数据库中5 275篇关于光伏建筑的文献进行计量研究分析。采用CiteSpace 6.2.2版本和战略咨询智...在建筑上安装光伏是建筑业降碳减碳最有效的途径,了解国内外光伏建筑的发展动态对我国部署光伏具有重大意义。对Web of Science中的核心合集数据库中5 275篇关于光伏建筑的文献进行计量研究分析。采用CiteSpace 6.2.2版本和战略咨询智能支持系统对相关文献进行了发文机构、发文量、国家地区、关键词共现、关键词突现、关键词聚类和关键词时间线图分析。研究发现,光伏建筑主要分为热效能、可再生能源管理和光伏发电系统三大研究领域,近些年的研究热点集中在光伏发电的能源管理问题和光伏发电量问题上。展开更多
基金Sponsored by the Hebei Scientific and Technological Research and Development Plans (Grant No.07215615)
文摘In order to evaluate the effects of structural control and energy transition for the base-isolation with energy transducer (BIET), shaking table tests on a steel frame model (BIET system) with scale of 1:4 were conducted and the results were compared with the lead rubber beating (LRB) isolation system for the same model. Then numerical analysis of the system was carried out, in which the improved Wen analytic model was used to simulate the hysteretic law of transducers. The results show that the structural system can transform the partial earthquake energy to hydraulic energy ; furthermore, the effect of structural control can reach or be close to that of the LRB isolation system. The agreements between numerical analysis results and those of shaking table tests demonstrate the accuracy of the numerical model.
基金supported within the framework of the Basic Research Project of the Yunnan Province-Young Program(No.2019FD097)Agricultural Joint Special Project of the Yunnan Province-General Program(No.202101BD070001-118).
文摘In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy(SEM)and energy-dispersive X-ray spectrome-try(EDS).The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials.Compared with ordinary cement-based composites(OCCs),the SFRCCs demonstrate higher post-peak strength,ductility,and energy absorption capacity with higher fiber content.Moreover,the SFRCCs are strain rate sensitive materials,and their peak stress,ultimate strain,and energy integrals all increase with increasing strain rate.From the perspective of fracture failure characteristics,the failure of OCCs is dominated by the brittle failure of crystal cleavage.In contrast,the failure mode of the SFRCCs changes to microscale matrix cracks,multi-scale pull-out interface debonding of fibers(fine filaments and bundles),and mechanical interlock.This research provides an experimental basis for the engineering application of high-performance and green cement-based composites.
文摘In all convective heat transfer situations, losses occur in the flow field (by dissipation) as well as in the temperature field (by conduction). Typically these losses are more or less quantified by the friction factorfwith respect to losses in the flow field, and the Nusselt number Nu for the heat transfer quality. Assessing the process of convective heat transfer as a whole, then becomes problematic because two different non-dimensional quantities, f and Nu, have to be combined somehow. From a thermodynamics point of view, there is a reasonable alternative: Since all losses become manifest in corresponding entropy generation rates, these rates are determined in the velocity as well as in the temperature field. Based on the integration of the entropy generation fields, an energy devaluation number is introduced. It basically determines how much oftbe so-called entropic potential of the energy involved in a convective heat transfer process is used within it. This approach is called SLA (second law analysis).
基金Project supported by the National Natural Science Foundation of China (Nos. 12272089 and U1908217)the Fundamental Research Funds for the Central Universities of China (Nos. N2224001-4 and N2003013)the Basic and Applied Basic Research Foundation of Guangdong Province of China (No. 2020B1515120015)。
文摘The similitude theory helps to understand the physical behaviors of large structures through scaled models. Several papers have studied the similitude of shock issues. However, the dynamic similitude for shock responses of coupled structures is rarely incorporated in open studies. In this paper, scaling laws are derived for the shock responses and spectra of coupled structures. In the presented scaling laws, the geometric distortion and energy loss are considered. The ability of the proposed scaling laws is demonstrated in the simulation and experimental cases. In both cases, the similitude prediction for the prototype's time-domain waveform and spectrum is conducted with the scaled model and scaling laws. The simulation and experimental cases indicate that the predicted shock responses and spectra agree well with those of the prototype, which verifies the proposed scaling laws for predicting shock responses.
文摘For investigation of equilibrium conditions of electrons in an atom, and Ionization Energies of Elements, a simplified deterministic static model is proposed. The electrons are initially uniformly and sparsely arranged on the outer surface of nucleus. Then, by taking into account the nucleus-electron interaction (attractive and repulsive) and the mutual electron-electron repulsions, and by a simple step-by-step nonlinear static analysis program, all the electrons are found to equilibrate on the outer surface of the same sphere, which is concentric and larger than nucleus. In a second stage, starting from an equilibrium sphere of electrons, one of the electrons is subjected to gradual forced removal, radially and outwards with respect to nucleus. Within each removal step, the produced work increment is determined and the increments are summed. When no more significant attraction is exerted by nucleus to removed electron, the total work gives the Ionization Energy. After removing of single electron, the remaining electrons fall on a lower shell, that is, they equilibrate on the outer surface of a smaller concentric sphere. For nucleus-electron interaction, an L-J (Lennard-Jones) type curve, attractive and repulsive, is adopted. When the parameter of this curve is n > 1.0, the Ionization Energy exhibits an upper bound. As parameter n increases from 1.0 up to 2.0, the attractive potential of L-J curve is gradually weakened. The proposed model is applied on Argon. It is observed that, as the number of electrons increases, the radius of equilibrium sphere increases, too, whereas the attractive nucleus-electron potential is reduced;thus the Ionization Energy is reduced, too. Particularly, as the number of electrons and the radius of equilibrium sphere exceed some critical values, the above two last quantities exhibit abrupt falls. A regular polyhedron is revealed, which can accommodate Elements up to atomic number Z = 146, that is 28 more than Z = 118 of existing last Element, as guide for initial locations of electrons in the above first program.
文摘The present paper describes the energy analysis of a regenerative vapour power system. The regenerative steam turbines based on the Rankine cycle and comprised of vapour extractions have been used industrially since the beginning of the 20th century, particularly regarding the processes of electrical production. After having performed worked in the first stages of the turbine, part of the vapour is directed toward a regenerative exchanger and heats feedwater coming from the condenser. This process is known as regeneration, and the heat exchanger where the heat is transferred from steam is called a regenerator (or a feedwater heater). The profit in the output brought by regenerative rakings is primarily enabled by the lack of exchange of the tapped vapour reheating water with the low-temperature reservoir. The economic optimum is often fixed at seven extractions. One knows the Carnot relation, which is the best possible theoretical yield of a dual-temperature cycle;in a Carnot cycle, one makes the assumption that both compressions and expansions are isentropic. This article studies an ideal theoretical machine comprised of vapour extractions in which each cycle partial of tapped vapour obeys these same compressions and isentropic expansions.
文摘In the present article,we perform the second law analysis of classical Blasius flow accounting the effects of nonlinear radiation and frictional heating.The two-dimensional boundary layer momentum and energy equations are converted to self-similar equations using similarity transformations.The set of resultant ordinary differential equations are solved numerically.The numerical results obtained from solutions of dimensionless momentum and energy equations are used to calculate the entropy generation number and Bejan number.The velocity profile f'(ξ),temperature distributionθ(ξ),entropy production number Ns and Bejan number Be are plotted against the physical flow parameters and are discussed in detail.Further,for the sake of validation of our numerical code,the obtained results are reproduced using Matlab built-in boundary value solver bvp4c resulting in an excellent agreement.It is observed that entropy generation is increasing function of heating parameter,Prandtl number,Eckert number and radiation parameter.Further,it is observed that entropy generation can be minimized by reducing the operating temperatureΔT=T_(w)−T_(∞).
基金supported by the National Natural Science Foundation of China(Grant Nos.11201169,11271195,and 41231173)the Project of Graduate Education Innovation of Jiangsu Province,China(Grant No.CXLX13 366)
文摘A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the equations. The merit of the proposed scheme is that the local energy conservation law can hold exactly in any time-space region. With the periodic boundary conditions, the scheme also possesses the discrete change and global energy conservation laws. A nonlinear analysis shows that the LEP scheme converges to the exact solutions with order O(τ2 + h2). The theoretical properties are verified by numerical experiments.
文摘The Internet presents numerous sources of useful information nowadays. However, these resources are drowning under the dynamic Web, so accurate finding user-specific information is very difficult. In this paper we discuss a Semantic Graph Web Search (SGWS) algorithm in topic-specific resource discovery on the Web. This method combines the use of hyperlinks, characteristics of Web graph and semantic term weights. We implement the algorithm to find Chinese medical information from the Internet. Our study showed that it has better precision than traditional IR (Information Retrieval) methods and traditional search engines. Key words HITS - evolution web graph - power law distribution - context analysis CLC number TP 391 - TP 393 Foundation item: Supported by the National High-Performance Computation Fund (00303)Biography: Ye Wei-guo (1970-), male, Ph. D candidate, research direction: Web information mining, network security, artificial intelligence.
文摘在建筑上安装光伏是建筑业降碳减碳最有效的途径,了解国内外光伏建筑的发展动态对我国部署光伏具有重大意义。对Web of Science中的核心合集数据库中5 275篇关于光伏建筑的文献进行计量研究分析。采用CiteSpace 6.2.2版本和战略咨询智能支持系统对相关文献进行了发文机构、发文量、国家地区、关键词共现、关键词突现、关键词聚类和关键词时间线图分析。研究发现,光伏建筑主要分为热效能、可再生能源管理和光伏发电系统三大研究领域,近些年的研究热点集中在光伏发电的能源管理问题和光伏发电量问题上。