In the design realm of fusion power supplies,structural components play a pivotal role in ensuring the safety of fusion devices.To verify the reliability of the converter structure design at the Comprehensive Research...In the design realm of fusion power supplies,structural components play a pivotal role in ensuring the safety of fusion devices.To verify the reliability of the converter structure design at the Comprehensive Research Facility for Fusion Technology(CRAFT),meticulous analysis of the converter's dynamic impact is carefully performed based on the worst fault current(400k A),firstly.Subsequently,the thermal stress analysis based on the maximum allowable steadystate temperature is finished,and the equivalent thermal stress,thermal deformation,maximum shear stress of a single bridge arm and the whole converter are studied.Furthermore,a simple research method involving the current-sharing characteristics of a bridge arm with multithyristor parallel connection is proposed using a combination of Simplorer with Q3D in ANSYS.The results show that the current-sharing characteristics are excellent.Finally,the structural design has been meticulously tailored to meet the established requirements.展开更多
Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome datab...Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database.The expressions of GSK3 genes in different tissues and stress treatments,such as salt,drought,and cold,were assessed using transcriptome sequencing and quantitative real-time PCR(qRT-PCR).The study results revealed that the 12 GSK3 genes of sunflower,belonging to four classes(Classes I–IV),contained the GSK3 kinase domain and 11–13 exons.The majority of GSK3 genes were highly expressed in the leaf axil and flower,while their expression levels were relatively lower in the leaf.As a result of salt stress,six of the GSK3 genes(HaSK11,HaSK22,HaSK23,HaSK32,HaSK33,and HaSK41)displayed a notable increase in expression,while HaSK14 and HaSK21 experienced a significant decrease.With regard to drought stress,five of the GSK3 genes(HaSK11,HaSK13,HaSK21,HaSK22,and HaSK33)experienced a remarkable rise in expression.When exposed to cold stress,seven of the GSK3 genes(HaSK11,HaSK12,HaSK13,HaSK32,HaSK33,HaSK41,and HaSK42)showed a substantial increase,whereas HaSK21 and HaSK23 had a sharp decline.This research is of great importance in understanding the abiotic resistance mechanism of sunflowers and developing new varieties with improved stress resistance.展开更多
Abiotic stress reduces plant yield and quality.WRKY transcription factors play key roles in abiotic stress responses in plants,but the molecular mechanisms by which WRKY transcription factors mediate responses to drou...Abiotic stress reduces plant yield and quality.WRKY transcription factors play key roles in abiotic stress responses in plants,but the molecular mechanisms by which WRKY transcription factors mediate responses to drought and osmotic stresses in apple(Malus×domestica Borkh.)remain unclear.Here,we functionally characterized the apple GroupⅢWRKY gene MdWRKY115.qRT-PCR analysis showed that MdWRKY115 expression was up-regulated by drought and osmotic stresses.GUS activity analysis revealed that the promoter activity of MdWRKY115 was enhanced under osmotic stress.Subcellular localization and transactivation assays indicated that MdWRKY115 was localized to the nucleus and had a transcriptional activity domain at the N-terminal region.Transgenic analysis revealed that the overexpression of MdWRKY115 in Arabidopsis plants and in apple callus markedly enhanced their tolerance to drought and osmotic stresses.DNA affinity purification sequencing showed that MdWRKY115 binds to the promoter of the stress-related gene MdRD22.This binding was further verified by an electrophoretic mobility shift assay.Collectively,these findings suggest that MdWRKY115 is an important regulator of osmotic and drought stress tolerance in apple.展开更多
Background Globally,populations afflicted by armed conflict are known to have high rates of mental health disorders.Aims This meta-analysis aims to estimate the prevalence of post-traumatic stress disorder(PTSD)and de...Background Globally,populations afflicted by armed conflict are known to have high rates of mental health disorders.Aims This meta-analysis aims to estimate the prevalence of post-traumatic stress disorder(PTSD)and depressive symptoms among civilians residing in armed conflictaffected regions.Methods This meta-analysis was conducted in accordance with the Preferred Reporting Items forSystematic Reviews and Meta-Analyses.A literature search employing MEDLINE(R),Embase Classic+Embase,APA PsyclNFO,Ovid Healthstar,Journal@Ovid Full Text,Cochrane,PTSDpubs and CINAHL was conducted from inception until 19 March 2024 to identify relevant studies.Quality assessment was performed using the Joanna Briggs Institute Critical Appraisal Checklist for Prevalence Studies,and a Comprehensive Meta-Analysiswas usedto conduct the statistical analysis.Results The search yielded 38595 articles,of which 57 were considered eligible for inclusion.The included studies comprised data from 64596 participants.We estimated a prevalence of 23.70%(95%CI 19.50%to28.40%)forPTSD symptomsand 25.60%(95%Cl 20.70%to 31.10%)for depressive features among war-afflicted civilians.The subgroup analysis based on time since the war and the country's economic status revealed the highest prevalence for both PTSD and depressive symptoms was present during the years of war and in low/middle-incomecountries.Conclusions The results of this study provide conclusive evidence of the detrimental impacts of armed conflict on mental health outcomes.Hence,it is crucial to emphasise the significance of both physical and mental health in the aftermath of war and take appropriate humanistic measures to overcome challenges in the management of psychiatric illnesses.展开更多
Soil salinization is the main factor that threatens the growth and development of plants and limits the increase of yield.It is of great significance to study the key soil environmental factors affecting plant root tr...Soil salinization is the main factor that threatens the growth and development of plants and limits the increase of yield.It is of great significance to study the key soil environmental factors affecting plant root traits to reveal the adaptation strategies of plants to saline-alkaline-stressed soil environments.In this study,the root biomass,root morphological parameters and root mineral nutrient content of two alfalfa cultivars with different sensitivities to alkaline stress were analyzed with black soil as the control group and the mixed saline-alkaline soil with a ratio of 7:3 between black soil and saline-alkaline soil as the saline-alkaline treatment group.At the same time,the correlation analysis of soil salinity indexes,soil nutrient indexes and the activities of key enzymes involved in soil carbon,nitrogen and phosphorus cycles was carried out.The results showed that compared with the control group,the pH,EC,and urease(URE)of the soil surrounding the roots of two alfalfa cultivars were significantly increased,while soil total nitrogen(TN),total phosphorus(TP),organic carbon(SOC),andα-glucosidase activity(AGC)were significantly decreased under saline-alkaline stress.There was no significant difference in root biomass and root morphological parameters of saline-alkaline tolerant cultivar GN under saline-alkaline stress.The number of root tips(RT),root surface area(RS)and root volume(RV)of AG were reduced by 61.16%,44.54%,and 45.31%,respectively,compared with control group.The ratios of K^(+)/Na^(+),Ca^(2+)/Na^(+)and Mg^(2+)/Na^(+)of GN were significantly higher than those of AG(p<0.05).The root fresh weight(RFW)and dry weight(RDW),root length(RL),RV and RT of alfalfa were positively regulated by soil SOC and TN,but negatively regulated by soil pH,EC,and URE(p<0.01).Root Ca^(2+)/Na+ratio was significantly positively correlated with soil TN,TP and SOC(p<0.01).The absorption of Mg and Ca ions in roots is significantly negatively regulated by soilβ-glucosidase activity(BGC)and acid phosphatase activity(APC)(p<0.05).This study improved knowledge of the relationship between root traits and soil environmental factors and offered a theoretical framework for elucidating how plant roots adapt to saline-alkaline stressed soil environments.展开更多
Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component de...Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment.展开更多
Background: There are multiple questionnaires to measure academic stress in university students, which have been used in nursing students. In Puerto Rico, a questionnaire valid in content and reliability was required ...Background: There are multiple questionnaires to measure academic stress in university students, which have been used in nursing students. In Puerto Rico, a questionnaire valid in content and reliability was required to measure the variable of academic stress in nursing students. Purpose: The aim of this study was to adapt transculturally and validate the Academic Stress Questionnaire (CEA) for its use in Puerto Rico. Materials and Methods: Used for the first phase of this study consisted in the evaluation of the validity of content and appearance, whereas the second phase was the actual administering of the questionnaire to 20 (twenty) nursing students, to pilot test its internal consistency using the Cronbach’s α test. Results: Validity of content and appearance allowed for the modification of the questionnaire into one, consisting of 42 items, thus eliminating 34 premises from the original 76 items the questionnaire was composed of. Furthermore, the appearance of the questionnaire was modified by placing the measuring scales in columns, adapting social, demographic, and academic data to the required Puerto Rican reality. The sections meant to measure the academic stress variables were left intact, except for the linguistics adaptation, which was accomplished by a team of experts in the Spanish language. With an α global of 0.80 and coefficients larger than 0.7 in the multi-item sub scales, which oscillated between 0.750 and 0.860, the questionnaire provides a high reliability. Conclusion: Although the values reported in this study are somewhat lower than previous research, they were comparable the Cronbach’s Alpha coefficients reported by Cabanach, in which the numbers reported are considered high (α > 0.70) which show acceptable confiability of the subscales included in the study and a high degree of consistency and thus can be relied upon in future research. In synthesis, the Academic Stress Questionnaire (CEA) modified and adapted, thoroughly fulfills the established criteria of confiability and validity to evaluate academic stress of Puertorrican nursing students.展开更多
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend...This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.展开更多
This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide i...This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide in-formation about the existing works on the subject,critically discuss them and make suggestions for further research.The reviewed papers are presented on the basis of the various models for pavement-vehicle systems and the various methods for dynamically analyzing these systems.Flexible pavements are modeled by a homogeneous or layered half-plane with isotropic or anisotropic and linear elastic,viscoelastic or poroelastic material behavior.Rigid pavements are modeled by a beam or plate on a homogeneous or layered half-plane with material properties like the ones for flexible pavements.The vehicles are modeled as concentrated or distributed over a finite area loads moving with constant or time dependent speed.The above pavement-vehicle models are dynamically analyzed by analytical,analytical/numerical or purely numerical methods working in the time or frequency domain.Representative examples are presented to illustrate the models and methods of analysis,demonstrate their merits and assess the effects of the various parameters on pavement response.The paper closes with con-clusions and suggestions for further research in the area.The significance of this research effort has to do with the presentation of the existing literature on the subject in a critical and easy to understand way with the aid of representative examples and the identification of new research areas.展开更多
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut...The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.展开更多
Objective:To understand the latent categories of perceived stress in colorectal cancer patients and analyze the characteristics of different categories of patients.Methods:A total of 255 colorectal cancer patients rec...Objective:To understand the latent categories of perceived stress in colorectal cancer patients and analyze the characteristics of different categories of patients.Methods:A total of 255 colorectal cancer patients receiving treatment in the gastrointestinal surgery and oncology depar tments of a ter tiary Grade A hospital in Sichuan Province,from January 2023 to June 2023,were selected as the study subjects.General information questionnaire,Chinese version of the Perceived Stress Scale(CPSS),and Comprehensive Score Table for Patient-Repor ted Outcome Measures of Economic Toxicity(COST-PROM)were used for data collection.Results:Perceived stress in colorectal cancer patients was classified into 3 latent categories:C1“Low stress-stable type”(19.2%),C2“Moderate stress-uncontrolled type”(23.9%),and C3“High stress-anxious type”(56.9%).The average score of perceived stress was(34.07±5.08).Compared with C1 type,patients with a monthly household income of≤3000 RMB were more likely to belong to the C2 and C3 types(P<0.05),and patients without a stoma were less likely to belong to C3 type(P<0.05).Compared with C2 type,male patients were more likely to belong to C3 type(P<0.05),and patients without a stoma were less likely to belong to C3 type(P<0.05).Compared with C3 type,patients with higher economic toxicity scores were more likely to be classified into C1 and C2 types(P<0.05).Conclusions:Perceived stress in colorectal cancer patients exhibits distinct categorical features.Male gender,lower income,presence of a stoma,and higher economic toxicity are associated with higher levels of perceived stress in colorectal cancer patients.展开更多
Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy wa...Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism.展开更多
Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various he...Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.展开更多
On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of t...On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of the Tibetan Plateau(i.e.,Qinghai-Tibet Plateau),encompassing a rhombic-shaped area that intersects the Qilian-Qaidam Basin,Alxa Block,Ordos Block,and South China Block.In this study,we analyzed the deep tectonic pattern of the Jishishan earthquake by incorporating data on the crustal thickness,velocity structure,global navigation satellite system(GNSS)strain field,and anisotropy.We discovered that the location of the earthquake was related to changes in the crustal structure.The results showed that the Jishishan M_(s)6.2 earthquake occurred in a unique position,with rapid changes in the crustal thickness,Vp/Vs,phase velocity,and S-wave velocity.The epicenter of the earthquake was situated at the transition zone between high and low velocities and was in proximity to a low-velocity region.Additionally,the source area is flanked by two high-velocity anomalies from the east and west.The principal compressive strain orientation near the Lajishan Fault is primarily in the NNE and NE directions,which align with the principal compressive stress direction in this region.In some areas of the Lajishan Fault,the principal compressive strain orientations show the NNW direction,consistent with the direction of the upper crustal fast-wave polarization from local earthquakes and the phase velocity azimuthal anisotropy.These features underscore the relationship between the occurrence of the Jishishan M_(s)6.2 earthquake and the deep inhomogeneous structure and deep tectonic characteristics.The NE margin of the Tibetan Plateau was thickened by crustal extension in the process of northeastward expansion,and the middle and lower crustal materials underwent structural deformation and may have been filled with salt-containing fluids during the extension process.The presence of this weak layer makes it easier for strong earthquakes to occur through the release of overlying rigid crustal stresses.However,it is unlikely that an earthquake of comparable or larger magnitude would occur in the short term(e.g.,in one year)at the Jishishan east margin fault.展开更多
In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavel...In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavelength,incident angle,and blasting rising time on the DSCF distribution were analyzed.Theoretical results pointed out dynamic disturbances resulting in compressive stress concentration in the vertical direction and tensile stress in the incident direction.As the wavelength and rising time increased,there was a tendency for the amplitude of stress concentration to initially rise and then converge.Moreover,a series of 3D FEM models were established to evaluate the effect of different initial stress states on the dynamic failure of the tunnel surrounding rock.The results indicated that the failure of the surrounding rock was significantly influenced by the direction of the static maximum principal stress and the direction of the dynamic disturbance.Under the coupling of static and blasting loading,damage around the tunnel was more prone to occur in the dynamic and static stress concentration coincidence zone.Finally,the damage modes of rock tunnel under static stress and blasting disturbance from different directions were summarized and a proposed support system was presented.The results reveal the mechanisms of deep-buried rock tunnel destruction and dynamically triggered rockburst.展开更多
This study analysed the failure of dissimilar metal welds(DMWs)between ferritic heat resistant steels and austenitic stainless steels and investigated its influencing factors by means of numerical simulation,microstru...This study analysed the failure of dissimilar metal welds(DMWs)between ferritic heat resistant steels and austenitic stainless steels and investigated its influencing factors by means of numerical simulation,microstructure characterization and mechanical property test.Under the long-term high-temperature service condition in practical power plant,the DMW failure mode was along the interface between nickel-based weld metal(WM)and ferritic heat resistant steel,and the failure mechanism was stress/strain concentration,microstructure degradation and oxidation coupling acting on the interface.The numerical simulation results show that interface stress/strain concentration was due to the differences in coefficient of thermal expansion and creep strength,and the degree of stress/strain concentration was related to service time.The ferrite band formed at the WM/ferritic steel interface was prone to cracking,attracting the fracture along the interface.The interface crack allowed oxidation to develop along the WM/ferritic steel interface.During long-term service,the interface stress/strain concentration,microstructure and oxidation all evolved,which synergistically promoted interface failure of DMW.However,only under the long-term service of low stress conditions could trigger the interface failure of DMW.Meanwhile,long-term service would reduce the mechanical strength and plasticity of DMW.展开更多
In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,th...In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device.展开更多
Development and production from fractured reservoirs require extensive knowledge about the reservoir structures and in situ stress regimes.For this,this paper investigates fractures and the parameters(aperture and den...Development and production from fractured reservoirs require extensive knowledge about the reservoir structures and in situ stress regimes.For this,this paper investigates fractures and the parameters(aperture and density)through a combination of wellbore data and geomechanical laboratory testing in three separate wells in the Asmari reservoir,Zagros Belt,Iran.The Asmari reservoir(Oligo-Miocene)consists mainly of calcitic and dolomitic rocks in depths of 2000e3000 m.Based on the observation of features in several wellbores,the orientation and magnitude of the in situ stresses along with their influence on reservoir-scale geological structures and neotectonics were determined.The study identifies two regional tectonic fracture settings in the reservoir:one set associated with longitudinal and diagonal wrinkling,and the other related to faulting.The former,which is mainly of open fractures with a large aperture,is dominant and generally oriented in the N45°-90°W direction while the latter is obliquely oriented relative to the bedding and characterized by N45°-90°E.The largest aperture is found in open fractures that are longitudinal and developed in the dolomitic zones within a complex stress regime.Moreover,analysis of drilling-induced fractures(DIFs)and borehole breakouts(BBs)from the image logs revealed that the maximum horizontal stress(SHmax)orientation in these three wells is consistent with the NE-SW regional trend of the SHmax(maximum principal horizontal stress)in the Zagros Belt.Likewise,the stress magnitude obtained from geomechanical testing and poroelastic equations confirmed a variation in stress regime from normal to reverse,which changes in regard to active faults in the study area.Finally,a relationship between the development degree of open fractures and in situ stress regime was found.This means that in areas where the stress regime is complex and reverse,fractures would exhibit higher density,dip angle,and larger apertures.展开更多
Plant formation from in vitro-cultivated microspores involves a complex network of internal and environmental factors.Haploids/doubled haploids(DHs)derived from in vitro-cultured microspores are widely used in plant b...Plant formation from in vitro-cultivated microspores involves a complex network of internal and environmental factors.Haploids/doubled haploids(DHs)derived from in vitro-cultured microspores are widely used in plant breeding and genetic engineering.However,the mechanism underlying the developmental switch from regular pollen maturation towards microspore-derived plant regeneration remains poorly defined.Here,RNA-sequencing was employed to elucidate the transcriptional landscapes of four early stages of microspore embryogenesis(ME)in barley cultivars Golden Promise and Igri,which exhibit contrasting responsiveness to microspore-derived plant formation.Our experiments revealed fundamental regulatory networks,specific groups of genes,and transcription factor(TF)families potentially regulating the developmental switch.We identified a set of candidate genes crucial for genotype-dependent responsiveness/recalcitrance to ME.Our high-resolution temporal transcriptome atlas provides an important resource for future functional studies on the genetic control of microspore developmental transition.展开更多
Chinese cabbage is an important leafy vegetable crop with high water demand and susceptibility to drought stress.To explore the molecular mechanisms underlying the response to drought,we performed a transcriptome anal...Chinese cabbage is an important leafy vegetable crop with high water demand and susceptibility to drought stress.To explore the molecular mechanisms underlying the response to drought,we performed a transcriptome analysis of drought-tolerant and-sensitive Chinese cabbage genotypes under drought stress,and uncovered core drought-responsive genes and key signaling pathways.A co-expression network was constructed by a weighted gene coexpression network analysis(WGCNA)and candidate hub genes involved in drought tolerance were identified.Furthermore,abscisic acid(ABA)biosynthesis and signaling pathways and their drought responses in Chinese cabbage leaves were systemically explored.We also found that drought treatment increased the antioxidant enzyme activities and glucosinolate contents significantly.These results substantially enhance our understanding of the molecular mechanisms underlying drought responses in Chinese cabbage.展开更多
基金supported by the Talent Research Fund of Hefei University(No.21-22RC09)National Natural Science Foundation of China(No.U22A20225)。
文摘In the design realm of fusion power supplies,structural components play a pivotal role in ensuring the safety of fusion devices.To verify the reliability of the converter structure design at the Comprehensive Research Facility for Fusion Technology(CRAFT),meticulous analysis of the converter's dynamic impact is carefully performed based on the worst fault current(400k A),firstly.Subsequently,the thermal stress analysis based on the maximum allowable steadystate temperature is finished,and the equivalent thermal stress,thermal deformation,maximum shear stress of a single bridge arm and the whole converter are studied.Furthermore,a simple research method involving the current-sharing characteristics of a bridge arm with multithyristor parallel connection is proposed using a combination of Simplorer with Q3D in ANSYS.The results show that the current-sharing characteristics are excellent.Finally,the structural design has been meticulously tailored to meet the established requirements.
基金financed by the Anhui Provincial Central Leading Local Science and Technology Development Special Fund Project(202007d06020021)Project of Suzhou Science and Technology Bureau(2021143).
文摘Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database.The expressions of GSK3 genes in different tissues and stress treatments,such as salt,drought,and cold,were assessed using transcriptome sequencing and quantitative real-time PCR(qRT-PCR).The study results revealed that the 12 GSK3 genes of sunflower,belonging to four classes(Classes I–IV),contained the GSK3 kinase domain and 11–13 exons.The majority of GSK3 genes were highly expressed in the leaf axil and flower,while their expression levels were relatively lower in the leaf.As a result of salt stress,six of the GSK3 genes(HaSK11,HaSK22,HaSK23,HaSK32,HaSK33,and HaSK41)displayed a notable increase in expression,while HaSK14 and HaSK21 experienced a significant decrease.With regard to drought stress,five of the GSK3 genes(HaSK11,HaSK13,HaSK21,HaSK22,and HaSK33)experienced a remarkable rise in expression.When exposed to cold stress,seven of the GSK3 genes(HaSK11,HaSK12,HaSK13,HaSK32,HaSK33,HaSK41,and HaSK42)showed a substantial increase,whereas HaSK21 and HaSK23 had a sharp decline.This research is of great importance in understanding the abiotic resistance mechanism of sunflowers and developing new varieties with improved stress resistance.
基金supported by grants from the Natural Science Foundation of Hebei Province(Grant No.C2022204086)the Hebei Apple Innovation Team of Modern Agricultural Industry Technology System(Grant No.HBCT2021100211)the National Natural Science Foundation of China(Grant No.32072524).
文摘Abiotic stress reduces plant yield and quality.WRKY transcription factors play key roles in abiotic stress responses in plants,but the molecular mechanisms by which WRKY transcription factors mediate responses to drought and osmotic stresses in apple(Malus×domestica Borkh.)remain unclear.Here,we functionally characterized the apple GroupⅢWRKY gene MdWRKY115.qRT-PCR analysis showed that MdWRKY115 expression was up-regulated by drought and osmotic stresses.GUS activity analysis revealed that the promoter activity of MdWRKY115 was enhanced under osmotic stress.Subcellular localization and transactivation assays indicated that MdWRKY115 was localized to the nucleus and had a transcriptional activity domain at the N-terminal region.Transgenic analysis revealed that the overexpression of MdWRKY115 in Arabidopsis plants and in apple callus markedly enhanced their tolerance to drought and osmotic stresses.DNA affinity purification sequencing showed that MdWRKY115 binds to the promoter of the stress-related gene MdRD22.This binding was further verified by an electrophoretic mobility shift assay.Collectively,these findings suggest that MdWRKY115 is an important regulator of osmotic and drought stress tolerance in apple.
文摘Background Globally,populations afflicted by armed conflict are known to have high rates of mental health disorders.Aims This meta-analysis aims to estimate the prevalence of post-traumatic stress disorder(PTSD)and depressive symptoms among civilians residing in armed conflictaffected regions.Methods This meta-analysis was conducted in accordance with the Preferred Reporting Items forSystematic Reviews and Meta-Analyses.A literature search employing MEDLINE(R),Embase Classic+Embase,APA PsyclNFO,Ovid Healthstar,Journal@Ovid Full Text,Cochrane,PTSDpubs and CINAHL was conducted from inception until 19 March 2024 to identify relevant studies.Quality assessment was performed using the Joanna Briggs Institute Critical Appraisal Checklist for Prevalence Studies,and a Comprehensive Meta-Analysiswas usedto conduct the statistical analysis.Results The search yielded 38595 articles,of which 57 were considered eligible for inclusion.The included studies comprised data from 64596 participants.We estimated a prevalence of 23.70%(95%CI 19.50%to28.40%)forPTSD symptomsand 25.60%(95%Cl 20.70%to 31.10%)for depressive features among war-afflicted civilians.The subgroup analysis based on time since the war and the country's economic status revealed the highest prevalence for both PTSD and depressive symptoms was present during the years of war and in low/middle-incomecountries.Conclusions The results of this study provide conclusive evidence of the detrimental impacts of armed conflict on mental health outcomes.Hence,it is crucial to emphasise the significance of both physical and mental health in the aftermath of war and take appropriate humanistic measures to overcome challenges in the management of psychiatric illnesses.
基金the Agricultural Science and Technology Innovation Project of Jilin Province(Postdoctoral Fund Project)(CXGC2021RCB007)Agricultural Science and Technology Innovation Project of Jilin Province(Introduction of Doctor and High-Level Talents Project)(CXGC2022RCG008)+1 种基金Jilin Province Science and Technology Development Project(20200403014SF)Agricultural Science and Technology Innovation Project of Jilin Province(CXGC2021ZY036).
文摘Soil salinization is the main factor that threatens the growth and development of plants and limits the increase of yield.It is of great significance to study the key soil environmental factors affecting plant root traits to reveal the adaptation strategies of plants to saline-alkaline-stressed soil environments.In this study,the root biomass,root morphological parameters and root mineral nutrient content of two alfalfa cultivars with different sensitivities to alkaline stress were analyzed with black soil as the control group and the mixed saline-alkaline soil with a ratio of 7:3 between black soil and saline-alkaline soil as the saline-alkaline treatment group.At the same time,the correlation analysis of soil salinity indexes,soil nutrient indexes and the activities of key enzymes involved in soil carbon,nitrogen and phosphorus cycles was carried out.The results showed that compared with the control group,the pH,EC,and urease(URE)of the soil surrounding the roots of two alfalfa cultivars were significantly increased,while soil total nitrogen(TN),total phosphorus(TP),organic carbon(SOC),andα-glucosidase activity(AGC)were significantly decreased under saline-alkaline stress.There was no significant difference in root biomass and root morphological parameters of saline-alkaline tolerant cultivar GN under saline-alkaline stress.The number of root tips(RT),root surface area(RS)and root volume(RV)of AG were reduced by 61.16%,44.54%,and 45.31%,respectively,compared with control group.The ratios of K^(+)/Na^(+),Ca^(2+)/Na^(+)and Mg^(2+)/Na^(+)of GN were significantly higher than those of AG(p<0.05).The root fresh weight(RFW)and dry weight(RDW),root length(RL),RV and RT of alfalfa were positively regulated by soil SOC and TN,but negatively regulated by soil pH,EC,and URE(p<0.01).Root Ca^(2+)/Na+ratio was significantly positively correlated with soil TN,TP and SOC(p<0.01).The absorption of Mg and Ca ions in roots is significantly negatively regulated by soilβ-glucosidase activity(BGC)and acid phosphatase activity(APC)(p<0.05).This study improved knowledge of the relationship between root traits and soil environmental factors and offered a theoretical framework for elucidating how plant roots adapt to saline-alkaline stressed soil environments.
基金funded by the Science and Technology Innovation Project of the China Academy of Chinese Medical Sciences(Nos.CI2021A04618 and CI2021A01401).
文摘Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment.
文摘Background: There are multiple questionnaires to measure academic stress in university students, which have been used in nursing students. In Puerto Rico, a questionnaire valid in content and reliability was required to measure the variable of academic stress in nursing students. Purpose: The aim of this study was to adapt transculturally and validate the Academic Stress Questionnaire (CEA) for its use in Puerto Rico. Materials and Methods: Used for the first phase of this study consisted in the evaluation of the validity of content and appearance, whereas the second phase was the actual administering of the questionnaire to 20 (twenty) nursing students, to pilot test its internal consistency using the Cronbach’s α test. Results: Validity of content and appearance allowed for the modification of the questionnaire into one, consisting of 42 items, thus eliminating 34 premises from the original 76 items the questionnaire was composed of. Furthermore, the appearance of the questionnaire was modified by placing the measuring scales in columns, adapting social, demographic, and academic data to the required Puerto Rican reality. The sections meant to measure the academic stress variables were left intact, except for the linguistics adaptation, which was accomplished by a team of experts in the Spanish language. With an α global of 0.80 and coefficients larger than 0.7 in the multi-item sub scales, which oscillated between 0.750 and 0.860, the questionnaire provides a high reliability. Conclusion: Although the values reported in this study are somewhat lower than previous research, they were comparable the Cronbach’s Alpha coefficients reported by Cabanach, in which the numbers reported are considered high (α > 0.70) which show acceptable confiability of the subscales included in the study and a high degree of consistency and thus can be relied upon in future research. In synthesis, the Academic Stress Questionnaire (CEA) modified and adapted, thoroughly fulfills the established criteria of confiability and validity to evaluate academic stress of Puertorrican nursing students.
基金supported by a grant from the National Science and Technology Council of the Republic of China(Grant Number:MOST 112-2221-E-006-048-MY2).
文摘This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.
文摘This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide in-formation about the existing works on the subject,critically discuss them and make suggestions for further research.The reviewed papers are presented on the basis of the various models for pavement-vehicle systems and the various methods for dynamically analyzing these systems.Flexible pavements are modeled by a homogeneous or layered half-plane with isotropic or anisotropic and linear elastic,viscoelastic or poroelastic material behavior.Rigid pavements are modeled by a beam or plate on a homogeneous or layered half-plane with material properties like the ones for flexible pavements.The vehicles are modeled as concentrated or distributed over a finite area loads moving with constant or time dependent speed.The above pavement-vehicle models are dynamically analyzed by analytical,analytical/numerical or purely numerical methods working in the time or frequency domain.Representative examples are presented to illustrate the models and methods of analysis,demonstrate their merits and assess the effects of the various parameters on pavement response.The paper closes with con-clusions and suggestions for further research in the area.The significance of this research effort has to do with the presentation of the existing literature on the subject in a critical and easy to understand way with the aid of representative examples and the identification of new research areas.
文摘The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.
基金supported by the Health and Humanities Research Center Project of Zigong City Key Research Base of Philosophy and Social Sciences(No.JKRWY22-26)。
文摘Objective:To understand the latent categories of perceived stress in colorectal cancer patients and analyze the characteristics of different categories of patients.Methods:A total of 255 colorectal cancer patients receiving treatment in the gastrointestinal surgery and oncology depar tments of a ter tiary Grade A hospital in Sichuan Province,from January 2023 to June 2023,were selected as the study subjects.General information questionnaire,Chinese version of the Perceived Stress Scale(CPSS),and Comprehensive Score Table for Patient-Repor ted Outcome Measures of Economic Toxicity(COST-PROM)were used for data collection.Results:Perceived stress in colorectal cancer patients was classified into 3 latent categories:C1“Low stress-stable type”(19.2%),C2“Moderate stress-uncontrolled type”(23.9%),and C3“High stress-anxious type”(56.9%).The average score of perceived stress was(34.07±5.08).Compared with C1 type,patients with a monthly household income of≤3000 RMB were more likely to belong to the C2 and C3 types(P<0.05),and patients without a stoma were less likely to belong to C3 type(P<0.05).Compared with C2 type,male patients were more likely to belong to C3 type(P<0.05),and patients without a stoma were less likely to belong to C3 type(P<0.05).Compared with C3 type,patients with higher economic toxicity scores were more likely to be classified into C1 and C2 types(P<0.05).Conclusions:Perceived stress in colorectal cancer patients exhibits distinct categorical features.Male gender,lower income,presence of a stoma,and higher economic toxicity are associated with higher levels of perceived stress in colorectal cancer patients.
基金the National Natural Science Foundation of China Projects under Grant[Nos.51871211,U21A2049,52071220,51701129 and 51971054]Liaoning Province’s project of"Revitalizing Liaoning Talents"(XLYC1907062)+10 种基金the Doctor Startup Fund of Natural Science Foundation Program of Liaoning Province(No.2019-BS-200)the Strategic New Industry Development Special Foundation of Shenzhen(JCYJ20170306141749970)the funds of International Joint Laboratory for Light AlloysLiaoning Bai Qian Wan Talents Programthe Domain Foundation of Equipment Advance Research of 13th Five-year Plan(61409220118)National Key Research and Development Program of China under Grant[Nos.2017YFB0702001 and 2016YFB0301105]the Innovation Fund of Institute of Metal Research(IMR)Chinese Academy of Sciences(CAS)the National Basic Research Program of China(973 Program)project under Grant No.2013CB632205the Fundamental Research Fund for the Central Universities under Grant[No.N2009006]Bintech-IMR R&D Program[No.GYY-JSBU-2022-009]。
文摘Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism.
基金supported by the Fujian Province Seed Industry Innovation and Industrialization Project“Innovation and Industrialization Development of Precious Tree Seed Industries(Phoebe bornei)”(ZYCX-LY-202102)the Sub-project of National Key R&D Program“Phoebe bornei Efficient Cultivation Technology”(2016YFD0600603-2).
文摘Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.
基金the National Natural Science Foundation of China(Project Nos.41804046 and 41974050)the Special Fund of the Key Laboratory of Earthquake Prediction,China Earthquake Administration(No.CEAIEF2022010100).
文摘On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of the Tibetan Plateau(i.e.,Qinghai-Tibet Plateau),encompassing a rhombic-shaped area that intersects the Qilian-Qaidam Basin,Alxa Block,Ordos Block,and South China Block.In this study,we analyzed the deep tectonic pattern of the Jishishan earthquake by incorporating data on the crustal thickness,velocity structure,global navigation satellite system(GNSS)strain field,and anisotropy.We discovered that the location of the earthquake was related to changes in the crustal structure.The results showed that the Jishishan M_(s)6.2 earthquake occurred in a unique position,with rapid changes in the crustal thickness,Vp/Vs,phase velocity,and S-wave velocity.The epicenter of the earthquake was situated at the transition zone between high and low velocities and was in proximity to a low-velocity region.Additionally,the source area is flanked by two high-velocity anomalies from the east and west.The principal compressive strain orientation near the Lajishan Fault is primarily in the NNE and NE directions,which align with the principal compressive stress direction in this region.In some areas of the Lajishan Fault,the principal compressive strain orientations show the NNW direction,consistent with the direction of the upper crustal fast-wave polarization from local earthquakes and the phase velocity azimuthal anisotropy.These features underscore the relationship between the occurrence of the Jishishan M_(s)6.2 earthquake and the deep inhomogeneous structure and deep tectonic characteristics.The NE margin of the Tibetan Plateau was thickened by crustal extension in the process of northeastward expansion,and the middle and lower crustal materials underwent structural deformation and may have been filled with salt-containing fluids during the extension process.The presence of this weak layer makes it easier for strong earthquakes to occur through the release of overlying rigid crustal stresses.However,it is unlikely that an earthquake of comparable or larger magnitude would occur in the short term(e.g.,in one year)at the Jishishan east margin fault.
基金Project(12072376)supported by the National Natural Science Foundation of ChinaPoject(10533220215858)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavelength,incident angle,and blasting rising time on the DSCF distribution were analyzed.Theoretical results pointed out dynamic disturbances resulting in compressive stress concentration in the vertical direction and tensile stress in the incident direction.As the wavelength and rising time increased,there was a tendency for the amplitude of stress concentration to initially rise and then converge.Moreover,a series of 3D FEM models were established to evaluate the effect of different initial stress states on the dynamic failure of the tunnel surrounding rock.The results indicated that the failure of the surrounding rock was significantly influenced by the direction of the static maximum principal stress and the direction of the dynamic disturbance.Under the coupling of static and blasting loading,damage around the tunnel was more prone to occur in the dynamic and static stress concentration coincidence zone.Finally,the damage modes of rock tunnel under static stress and blasting disturbance from different directions were summarized and a proposed support system was presented.The results reveal the mechanisms of deep-buried rock tunnel destruction and dynamically triggered rockburst.
基金Supported by Youth Elite Project of CNNC and Modular HTGR Super-critical Power Generation Technology collaborative project between CNNC and Tsinghua University Project (Grant No.ZHJTIZYFGWD20201)。
文摘This study analysed the failure of dissimilar metal welds(DMWs)between ferritic heat resistant steels and austenitic stainless steels and investigated its influencing factors by means of numerical simulation,microstructure characterization and mechanical property test.Under the long-term high-temperature service condition in practical power plant,the DMW failure mode was along the interface between nickel-based weld metal(WM)and ferritic heat resistant steel,and the failure mechanism was stress/strain concentration,microstructure degradation and oxidation coupling acting on the interface.The numerical simulation results show that interface stress/strain concentration was due to the differences in coefficient of thermal expansion and creep strength,and the degree of stress/strain concentration was related to service time.The ferrite band formed at the WM/ferritic steel interface was prone to cracking,attracting the fracture along the interface.The interface crack allowed oxidation to develop along the WM/ferritic steel interface.During long-term service,the interface stress/strain concentration,microstructure and oxidation all evolved,which synergistically promoted interface failure of DMW.However,only under the long-term service of low stress conditions could trigger the interface failure of DMW.Meanwhile,long-term service would reduce the mechanical strength and plasticity of DMW.
基金Youth Talent Project of Basic Scientific Research Project of Liaoning Province Education Department(Grant No.LJKZ0270)Youth Project of Basic Scientific Research Project of Liaoning Province Education Department(Grant No.LJKQZ2021055).
文摘In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device.
文摘Development and production from fractured reservoirs require extensive knowledge about the reservoir structures and in situ stress regimes.For this,this paper investigates fractures and the parameters(aperture and density)through a combination of wellbore data and geomechanical laboratory testing in three separate wells in the Asmari reservoir,Zagros Belt,Iran.The Asmari reservoir(Oligo-Miocene)consists mainly of calcitic and dolomitic rocks in depths of 2000e3000 m.Based on the observation of features in several wellbores,the orientation and magnitude of the in situ stresses along with their influence on reservoir-scale geological structures and neotectonics were determined.The study identifies two regional tectonic fracture settings in the reservoir:one set associated with longitudinal and diagonal wrinkling,and the other related to faulting.The former,which is mainly of open fractures with a large aperture,is dominant and generally oriented in the N45°-90°W direction while the latter is obliquely oriented relative to the bedding and characterized by N45°-90°E.The largest aperture is found in open fractures that are longitudinal and developed in the dolomitic zones within a complex stress regime.Moreover,analysis of drilling-induced fractures(DIFs)and borehole breakouts(BBs)from the image logs revealed that the maximum horizontal stress(SHmax)orientation in these three wells is consistent with the NE-SW regional trend of the SHmax(maximum principal horizontal stress)in the Zagros Belt.Likewise,the stress magnitude obtained from geomechanical testing and poroelastic equations confirmed a variation in stress regime from normal to reverse,which changes in regard to active faults in the study area.Finally,a relationship between the development degree of open fractures and in situ stress regime was found.This means that in areas where the stress regime is complex and reverse,fractures would exhibit higher density,dip angle,and larger apertures.
基金funded by National Science Center in Poland Grant (2015/18/M/NZ3/00348) to Iwona·Zursupported by Czech Science Foundation Grant (21-02929S) to Ales Pecinka+2 种基金European Regional Development Fund project TANGENC (CZ.02.01.01/00/ 22_008/0004581)funded by Ad Agri F (CZ.02.01.01/00/22_008/0004635)supplied by the project “e-Infrastruktura CZ” (e-INFRA CZ LM2018140) supported by the Ministry of Education, Youth and Sports of the Czech Republic
文摘Plant formation from in vitro-cultivated microspores involves a complex network of internal and environmental factors.Haploids/doubled haploids(DHs)derived from in vitro-cultured microspores are widely used in plant breeding and genetic engineering.However,the mechanism underlying the developmental switch from regular pollen maturation towards microspore-derived plant regeneration remains poorly defined.Here,RNA-sequencing was employed to elucidate the transcriptional landscapes of four early stages of microspore embryogenesis(ME)in barley cultivars Golden Promise and Igri,which exhibit contrasting responsiveness to microspore-derived plant formation.Our experiments revealed fundamental regulatory networks,specific groups of genes,and transcription factor(TF)families potentially regulating the developmental switch.We identified a set of candidate genes crucial for genotype-dependent responsiveness/recalcitrance to ME.Our high-resolution temporal transcriptome atlas provides an important resource for future functional studies on the genetic control of microspore developmental transition.
基金supported by the National Key Research and Development Program of China(2022YFF1003003)the National Natural Science Foundation of China(32070333)the Startup Funding(Z111021922)from Northwest A&F University,China。
文摘Chinese cabbage is an important leafy vegetable crop with high water demand and susceptibility to drought stress.To explore the molecular mechanisms underlying the response to drought,we performed a transcriptome analysis of drought-tolerant and-sensitive Chinese cabbage genotypes under drought stress,and uncovered core drought-responsive genes and key signaling pathways.A co-expression network was constructed by a weighted gene coexpression network analysis(WGCNA)and candidate hub genes involved in drought tolerance were identified.Furthermore,abscisic acid(ABA)biosynthesis and signaling pathways and their drought responses in Chinese cabbage leaves were systemically explored.We also found that drought treatment increased the antioxidant enzyme activities and glucosinolate contents significantly.These results substantially enhance our understanding of the molecular mechanisms underlying drought responses in Chinese cabbage.