期刊文献+
共找到1,712篇文章
< 1 2 86 >
每页显示 20 50 100
Carrying Capacity and Coupling Coordination of Water and Land Resources Systems in Arid and Semi-arid Areas: A Case Study of Yulin City, China
1
作者 ZHANG Qianxi CAO Zhi +1 位作者 WANG Yongsheng HUANG Yijia 《Chinese Geographical Science》 SCIE CSCD 2024年第5期931-950,共20页
Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as... Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources. 展开更多
关键词 water and land resources systems carrying capacity coupling coordination human-earth system sustainable development Yulin City China
下载PDF
Evaluation of Water Resources Carrying Capacity in Gansu Section of Yellow River Basin Based on Fuzzy Comprehensive Evaluation Model
2
作者 Shuanbao LIN 《Meteorological and Environmental Research》 CAS 2023年第4期42-45,49,共5页
As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically ev... As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically evaluate the water resources carrying capacity is the premise to improve the regional water resources carrying capacity and ensure the regional water security.The Gansu section of the Yellow River basin is an important water conservation and recharge area.Whether the water resources in this area can ensure the normal operation of the ecosystem and whether it can carry the sustainable development of social economy is the key to realize the high-quality development of the Yellow River basin.In this study,from the three dimensions of water consumption per capita,water consumption of 10000 yuan GDP and ecological water use rate,by constructing the evaluation index system and index grading standard of water resources carrying capacity,the fuzzy comprehensive evaluation model was used to evaluate the water resources carrying capacity of Gansu section of the Yellow River Basin,in order to provide theoretical decision-making basis for the comprehensive development,utilization and planning management of water resources in Gansu section of the Yellow River basin and even the whole basin,and help the high-quality development of the Yellow River basin. 展开更多
关键词 Fuzzy comprehensive evaluation model water resources carrying capacity EVALUATION Yellow River basin Gansu section
下载PDF
Analysis of Water Resources Carrying Capacity of the “Belt and Road” Initiative Countries based on Virtual Water Theory 被引量:5
3
作者 ZHENG Xin XU Zengrang 《Journal of Resources and Ecology》 CSCD 2019年第6期574-583,共10页
Most countries along the route of the"Belt and Road"initiative are faced with a shortage of water resources.However,successful implementation of the initiative depends on water availability to support econom... Most countries along the route of the"Belt and Road"initiative are faced with a shortage of water resources.However,successful implementation of the initiative depends on water availability to support economic and social development.We designed a water resources carrying capacity evaluation index system,assigned grades and weights to each evaluation index and calculated a water resources carrying index for the 65 countries along the route.We used virtual water theory to analyze China's net virtual water import from key bulk agricultural products through international trade.For more than half of the countries along the route,their water resources will be unable to support the economic development that will be necessary for fulfilling the goals of the Initiative.As a country with insufficient water resources carrying capacity,China is a net virtual water importer in the virtual water trade.This virtual water trade can improve China's water resources support capacity,and ensure China's water and food security for the future. 展开更多
关键词 water resources carrying capacity virtual water the"Belt and Road" agricultural products trade
原文传递
Analysis of Nuclear Power Development in Henan Province Based on Carrying Capacity of Water Resources
4
作者 Chengli Wang Zhansheng Xi Lei Li 《Meteorological and Environmental Research》 CAS 2013年第8期53-55,共3页
Firstly, current situation of water resources in Henan Province was analyzed, and then carrying capacity of water resources in Henan Province was assessed based on "degree of water stress" and "balance index of car... Firstly, current situation of water resources in Henan Province was analyzed, and then carrying capacity of water resources in Henan Province was assessed based on "degree of water stress" and "balance index of carrying capacity of regional water resources", finally the thinking on adopting air-cooling technology to develop nuclear power in Henan Province was expounded. 展开更多
关键词 water resources carrying capacity Inland nuclear power Air-cooling technology China
下载PDF
Evaluation Model of Carrying Capacity of Water Resources Based on Standardized Indices of Radial Basis Function
5
作者 臧蕾 李祚泳 刘伟 《Agricultural Science & Technology》 CAS 2012年第6期1365-1367,共3页
[Objective] The aim was to study on RBF model about evaluation on carrying capacity of water resources based on standardized indices. [Method] The indices were transformed and the averages of standard values in differ... [Objective] The aim was to study on RBF model about evaluation on carrying capacity of water resources based on standardized indices. [Method] The indices were transformed and the averages of standard values in different levels were taken as the standardized values of components of central vectors for basic functions of RBF hidden nodes. Hence, the basic functions are suitable for most indices, simplifying expression and calculation of basic functions. [Result] RBF models concluded through Monkey-king Genetic Algorithm with weights optimization are used in evaluation on water carrying capacity in three districts in Changwu County in Shaanxi Province, which were in consistent with that through fuzzy evaluation. [Conclusion] RBF, simple and practical, is universal and popular. 展开更多
关键词 Indices standardization RBF water resource carrying capacity Evaluation model
下载PDF
Evaluation of regional water resources carrying capacity based on binary index method and reduction index method 被引量:13
6
作者 Hong-yuan Fang Sheng-wei Gan Chen-ying Xue 《Water Science and Engineering》 EI CAS CSCD 2019年第4期263-273,共11页
Based on the regional water resources carrying capacity(WRCC)evaluation principles and evaluation index system in the National Technical Outline of Water Resources Carrying Capacity Monitoring and Early Warning(hereaf... Based on the regional water resources carrying capacity(WRCC)evaluation principles and evaluation index system in the National Technical Outline of Water Resources Carrying Capacity Monitoring and Early Warning(hereafter referred to as the Technical Outline),this paper elaborates on the collection and sorting of the basic data of water resources conditions,water resources development and utilization status,social and economic development in basins,analysis and examination of integrity,consistency,normativeness,and rationality of the basic data,and the necessity of WRCC evaluation.This paper also describes the technique of evaluating the WRCC in prefecture-level cities and city-level administrative divisions in the District of the Taihu Lake Basin,which is composed of the Taihu Lake Basin and the Southeastern River Basin.The evaluation process combines the binary index evaluation method and reduction index evaluation method.The former,recommended by the Technical Outline,uses the total water use and the amount of exploited groundwater as evaluation indices,showing stronger operability,while the latter is developed by simplifying and optimizing the comprehensive index system with greater systematicness and completeness.The mutual validation and adjustment of the results of the above-mentioned two evaluation methods indicate that the WRCC of the District of the Taihu Lake Basin is overloaded in general because some prefecture-level cities and city-level administrative divisions in the Taihu Lake Basin and the Southeastern River Basin are in a severely overloaded state.In order to explain this conclusion,this paper analyzes the causes of WRCC overloading from the aspects of basin water environment,water resources development and utilization,water resources regulation and control ability,water resources utilization efficiency,and water resources management. 展开更多
关键词 water resources carrying capacity(WRCC) EVALUATION Binary index method Reduction index method Prefecture-level cities and city-level administrative divisions
下载PDF
System dynamics model of Suzhou water resources carrying capacity and its application 被引量:14
7
作者 Li CHENG 《Water Science and Engineering》 EI CAS 2010年第2期144-155,共12页
A model of Suzhou water resources carrying capacity (WRCC) was set up using the method of system dynamics (SD). In the model, three different water resources utilization programs were adopted: (1) continuity of... A model of Suzhou water resources carrying capacity (WRCC) was set up using the method of system dynamics (SD). In the model, three different water resources utilization programs were adopted: (1) continuity of existing water utilization, (2) water conservation/saving, and (3) water exploitation. The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors. The corresponding Suzhou WRCC values for several target years were calculated by the model. Based on these results, proper ways to improve the Suzhou WRCC are proposed. The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources. 展开更多
关键词 system dynamics (SD) water resources carrying capacity (WRCC) eco-environmental water demand Suzhou City
下载PDF
Risk Analysis on Groundwater Resources Carrying Capacity Based on Blind Number Theory 被引量:5
8
作者 ZHANG Ji1,2,YU Sujun31. Key Laboratory of Mountain Hazards and Surface Process,Chinese Academy of Sciences/Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,Sichuan,China 2. Graduate University of the Chinese Academy of Sciences,Beijing 100049,China 3. School of Environmental Science and Engineering,Southwest Jiaotong University,Chengdu 610041,Sichuan,China 《Wuhan University Journal of Natural Sciences》 CAS 2007年第4期669-676,共8页
Blind numbers of evaluation indices about groundwater resources carrying capacity are defined from the concomitancy of randomness, fuzziness, grey property and unascertainment of groundwater system. Based on fuzzy the... Blind numbers of evaluation indices about groundwater resources carrying capacity are defined from the concomitancy of randomness, fuzziness, grey property and unascertainment of groundwater system. Based on fuzzy theory, a comprehensive evaluation model on groundwater resources carrying capacity is constructed with blind information. Then a risk assessment model of surcharge about groundwater resources carrying capacity is established on blind reliability theory. The probable value "*" matrix of fuzzy membership degree about carrying capacity corresponding to each judgment level can be obtained with the aid of blind algorithm as well as the subjective reliability "×" matrix. And then a graph of "groundwater carrying capacity v.s. accumulative reliability" can be gained Based on the graph, fuzzy membership degree of groundwater resources carrying capacity to each judgment level under different risk probability can be got. Thus, a comparatively reasonable judgment to groundwater resources carrying capacity might be obtained, with comprehensive analysis to the state of society, economy technology and ecology. 展开更多
关键词 blind number theory groundwater resources carrying capacity evaluation risk analysis
下载PDF
Measurement and assessment of water resources carrying capacity in Henan Province, China 被引量:9
9
作者 Ming Dou Jun-xia Ma +1 位作者 Gui-qiu Li Qi-ting Zuo 《Water Science and Engineering》 EI CAS CSCD 2015年第2期102-113,共12页
As demands on limited water resources intensify, concerns are being raised about water resources carrying capacity(WRCC), which is defined as the maximum sustainable socioeconomic scale that can be supported by avai... As demands on limited water resources intensify, concerns are being raised about water resources carrying capacity(WRCC), which is defined as the maximum sustainable socioeconomic scale that can be supported by available water resources and while maintaining defined environmental conditions. This paper proposes a distributed quantitative model for WRCC, based on the principles of optimization, and considering hydro-economic interaction, water supply, water quality, and socioeconomic development constraints. With the model, the WRCCs of 60 subregions in Henan Province were determined for different development periods. The results showed that the water resources carrying level of Henan Province was suitably loaded in 2010, but that the province would be mildly overloaded in 2030 with respect to the socioeconomic development planning goals. The restricting factors for WRCC included the available water resources, the increasing rate of GDP, the urbanization ratio, the irrigation water utilization coefficient, the industrial water recycling rate, and the wastewater reuse rate, of which the available water resources was the most crucial factor. Because these factors varied temporally and spatially, the trends in predicted WRCC were inconsistent across different subregions and periods. 展开更多
关键词 water resources carrying capacity Hydro-economic interaction Sustainable socioeconomic scale water resources carrying level Henan Province
下载PDF
Evaluation of the water resources carrying capacity of Shandong peninsula, China 被引量:2
10
作者 WANG Kui-feng 《Journal of Groundwater Science and Engineering》 2016年第2期120-130,共11页
Research on the carrying capacity and security of water resources is vital for its contribution to implementing sustainable development goals. The limitation of water resources is one of the most important factors tha... Research on the carrying capacity and security of water resources is vital for its contribution to implementing sustainable development goals. The limitation of water resources is one of the most important factors that influence the sustainable utilization of resources. Studying the carrying capacity of water resources will not only facilitate monitoring and forecast of national resources and environmental carrying capacity, but also be valuable for building ecological civilization. According to the principles of evaluation system, the carrying capacity of water resources on Shandong peninsula is explored. A comprehensive evaluation model of the carrying capacity of water resources is constructed based on the carrying capacity of water resources index and the composite of water resources index. The results show that the capacity of water resources on Shandong peninsula is generally consistent with overexploitation, and that the development and utilization of water resources has reached a considerable scale under existing economic and technological conditions. The carrying capacity of water resources in this region is relatively small, and the contradiction between supply and demand of water resources is alarming. Relative countermeasures are put forward, to improve the water resources carrying capacity and to provide a basis for future sustainable development and utilization of water resources in this region. 展开更多
关键词 water resources carrying capacity Shandong peninsula EVALUATION water resources carrying capacity index
下载PDF
Carrying capacity of water environment in public tourism resources based on matter-element model 被引量:6
11
作者 XU Zi-lin YAN Wei 《Ecological Economy》 2016年第3期296-300,共5页
When water environmental carrying capacity of public resource tourist attraction is studied, the two action subjects of tourists and local residents should be discussed, and comprehensive consideration must be given t... When water environmental carrying capacity of public resource tourist attraction is studied, the two action subjects of tourists and local residents should be discussed, and comprehensive consideration must be given to the influence of these two on water environment. On the basis of water resource carrying capacity and water quality carrying capacity, water environmental carrying capacity index of public resource tourist attraction was constructed, the model for the water environmental carrying capacity of public resource tourist attraction was established on the basis of matter-element model and analytical hierarchy process. By applying this method, water environmental carrying capacity situation of a certain public resource tourist attraction can be gained, moreover, situations about several aspects of water environmental carrying capacity can be evaluated. 展开更多
关键词 matter-element model public tourism resources water environmental carrying capacity
下载PDF
The Population Carrying Capacity of Water Resources in Yulin City 被引量:1
12
作者 Lijuan DANG Yong XU Zhiqiang WANG 《Asian Agricultural Research》 2014年第12期85-91,95,共8页
Assessing the water resource carrying capacity is beneficial for measuring the scale of industry and population agglomeration,and also avoiding the contradiction between increasing people and decreasing available wate... Assessing the water resource carrying capacity is beneficial for measuring the scale of industry and population agglomeration,and also avoiding the contradiction between increasing people and decreasing available water resource,due to the expansion of industry and city size.Based on the prediction model of optimum population development size,by using hydrological data,also with the demographic data from 1956 to 2010,this article analyzes and predicts the urban moderate scale under the limit of the water resource in the future of Yulin City by GIS. The main conclusions are as follows. There is growing tendency of water resources overloading. According to the result of model simulation,by2015,the overload rate of population size will be 1. 04. By 2020,the overload rate of population size will grow up to 1. 08. The oversized population mainly comes from cities and towns. The overload rate for cities and towns in 2015 and 2020 is 1. 89 and 1. 73,respectively. With the expansion of cities and industries,suburban areas could have a great potential for carrying population,because lots of suburban people may move to cities and towns according to prediction. In view of the above-mentioned facts,the population size should be controlled in a reasonable range. 展开更多
关键词 carrying capacity of water resources POPULATION SI
下载PDF
Evaluation on water resources carrying capacity of Changchun-Jilin Region 被引量:1
13
作者 YUE Chen CUI Ya-li +1 位作者 RAO Rong DONG Xiang 《Journal of Groundwater Science and Engineering》 2015年第2期164-169,共6页
Based on such principles as sustainable development and ecological cycle, this paper evaluates the water resources carrying capacity(WCC) of Changchun-Jilin region using a population-economy-water resources correlatio... Based on such principles as sustainable development and ecological cycle, this paper evaluates the water resources carrying capacity(WCC) of Changchun-Jilin region using a population-economy-water resources correlation evaluation model built on the basis of WCC evaluation method as elaborated in the methodology of Functional Zoning of Population Development. Results show that the annual WCC of Changchun-Jilin region is able to support the population there, as a basic balance is struck between population and water resources. The incorporation of WCC into overall urban planning is one of the building blocks for sustainable city development with an advisable size. 展开更多
关键词 water resources carrying capacity Changchun-Jilin region Population-economywater resources correlation evaluation model
下载PDF
Evaluation of water resources carrying capacity of Gonghe basin based on fuzzy comprehensive evaluation method 被引量:1
14
作者 MENG Rui-fang YANG Hui-feng LIU Chun-lei 《Journal of Groundwater Science and Engineering》 2016年第3期213-219,共7页
Gonghe Basin belongs to arid and semi-arid climatic zone, where water resource is relatively scarce and desertification is serious, so it is necessary to find out water resources carrying capacity. By using fuzzy comp... Gonghe Basin belongs to arid and semi-arid climatic zone, where water resource is relatively scarce and desertification is serious, so it is necessary to find out water resources carrying capacity. By using fuzzy comprehensive evaluation method, the assessment on water resources carrying capacity in Gonghe Basin was conducted: Water resource carrying capacity of Gonghe County is less, while that of Guinan County and Chaka Town of Wulan County are greater; water resources of Gonghe Basin could sustain cultivated land of 652.6 thousand acres and grassland of 2 368.6 thousand acres respectively in 2020, water resources of Gonghe Basin could sustain cultivated land of 948.2 thousand acres and grassland of 2 247.6 thousand acres respectively in 2030. 展开更多
关键词 Gonghe Basin water resources carrying capacity Fuzzy comprehensive evaluation method
下载PDF
Safety Evaluation of Water Environment Carrying Capacity of Five Cities in Ningxia Based on Ecological Footprint of Water Resources 被引量:1
15
作者 Chang LU Rui XI +1 位作者 Zhengjun HEI Lian TANG 《Asian Agricultural Research》 2022年第5期11-16,共6页
[Objectives]To make safety evaluation of water environment carrying capacity of five cities in Ningxia based on ecological footprint of water resources.[Methods]With the help of the grey relational model,15 indicators... [Objectives]To make safety evaluation of water environment carrying capacity of five cities in Ningxia based on ecological footprint of water resources.[Methods]With the help of the grey relational model,15 indicators were selected from the natural,economic,and social aspects,and the most influential factors in the three fields were selected.Based on the concept of ecological priority,the water resources carrying capacity of the five cities in Ningxia from 2010 to 2019 was calculated with the help of the water resources ecological footprint model.Then,the indicators of the water resources ecological footprint model were coupled with the existing indicators to establish a comprehensive evaluation indicator system.Finally,the changes of the water environment carrying capacity of the five cities in Ningxia were analyzed with the help of the principal component analysis(PCA).[Results]The ecological pressure of water resources and the ecological deficit of water resources in the five cities were relatively large.Specifically,Yinchuan City had the most obvious deficit of water resources but good carrying capacity;Zhongwei City had a large ecological deficit of water resources,poor carrying capacity,and the largest ecological pressure index of water resources;Guyuan City had low water resources ecological deficit,water resources ecological carrying capacity and water resources ecological pressure index.[Conclusions]Through the analysis of the coupling indicator system,it can be seen that the water environment carrying capacity of the five cities is in an upward trend,indicating that the water environment in each region tends to become better. 展开更多
关键词 water environment carrying capacity Grey relation analysis(GRA) Principal component analysis(PCA) water resources ecological footprint Influencing factors
下载PDF
Dynamic evaluation of water resources carrying capacity of the Dianchi Lake Basin in 2005-2015,based on DSPERM framework model and simulated annealing-projection pursuit model 被引量:1
16
作者 Jiayang Wang Xiaoqin Mu +3 位作者 Shouji Chen Wei Liu Zhuo Wang Zhanfeng Dong 《Regional Sustainability》 2021年第2期189-201,共13页
With the intensi fed impact of human activities,most lakes have been severely disturbed and the lake ecosystem has been seriously damaged,which exerted a great impact on the living envi-ronment of human beings in the ... With the intensi fed impact of human activities,most lakes have been severely disturbed and the lake ecosystem has been seriously damaged,which exerted a great impact on the living envi-ronment of human beings in the lake basins.The health of the lake ecosystem has gradually become one of the hot issues in recent years.In this study,the water resources carrying capacity(WRCC)was used to reveal the chain rel ationship between human activities and water environ-ment in the economic dewelopment of the Dianchi Lake Basin in Kunming City of China during 2005-2015.Specifically,we chose 25 ewaluation indicators related to the water environment and socialeconomic activities,classified them into six subsystems,Le,the driwing force subsystem(D),the water resources si tuation and consumption subsystem(S),the water resources pressure subsystem(P),the water environmental situation subsystem(E),the response subsystem(R),and the management subsystem(M),and built a comprehensive assessment system-DSPERM frame-work model.Si mulated annealing-projection pursuit model which reflects the structure or feature of high-dimensional data was adopted to calculate the WRCC of the Dianchi Lake Basin during 2005-2015 by weighting each evaluation indicator and each subsystem of the DSPERM frame work model.The resuls show that the WRCC of the Dlanchi Lake Basin was in level II(medium carying capacity)from 2005 to 2012.Since 2013,the WRCC has been at level II(strong carying capacity),and from 2005 to 2015,it showed a gradual upward trend.The evaluation indicators of each subsystem varied greatly and exhibited different development trends.The indicators of the water resources pressure subsystem had the greatest impact on the WRCC,followed by the in-dicators of the water environmental si tuation subsystem and the water resources situation and consumption subsystem.We recommend that the DSPERM framework model and the simulated anneal ing-projection pursuit model constructed in this work can be used to analyze the dynamic changes of the WRCC over the years.They have the advantages of practicability and feasibilty,and can provide the basis for the scienti fic decision-making and comprehensive management of regional water environment planning. 展开更多
关键词 water resources carrying capacity DSPERM framework model Annealing-projection pursuit model Evaluation indicator Dianchi Lake Basin
下载PDF
Assessment on the Water Resources Carrying Capacity in Karst Area Based on the Cosine Vector Included Angle 被引量:5
17
作者 袁子勇 焦树林 +1 位作者 杨萍 金开梅 《Meteorological and Environmental Research》 CAS 2010年第12期1-2,13,共3页
[Objective] The research aimed to assess the water resources carrying capacity in Guizhou Province based on the cosine vector included angle method. [Method] By using the cosine vector included angle method, the index... [Objective] The research aimed to assess the water resources carrying capacity in Guizhou Province based on the cosine vector included angle method. [Method] By using the cosine vector included angle method, the index weight was determined. The projection value of water resources carrying capacity in Guizhou Province was counted by using the multi-objective gray relational projection method. Moreover, the projection value which was counted by the index weight determined by the mean-variance method was as the control. [Result] The projection values which were obtained by two kinds of methods were very close, and the ordering result was consistent. [Conclusion] In the assessment of water resources carrying capacity, it was feasible to use the cosine vector included angle method to determine the index weight. 展开更多
关键词 Cosine vector included angle Index weight Gray relational projection water resources carrying capacity China
下载PDF
Comprehensive Assessment of Water Environment Carrying Capacity of Yunnan Province 被引量:2
18
作者 DONG Xuyan LU Ying +1 位作者 ZHOU Zixuan CHEN Hao 《Journal of Landscape Research》 2017年第3期77-82,共6页
Based on the concept and connotation of water environment carrying capacity, taking Yunnan Province as a case, this paper built water environment carrying capacity evaluation system from the perspectives of water reso... Based on the concept and connotation of water environment carrying capacity, taking Yunnan Province as a case, this paper built water environment carrying capacity evaluation system from the perspectives of water resources, water environment carrying capacity and socio-economic development, and applied the index evaluation model to analyze the trends of water environment carrying capacity in Yunnan from 2006 to 2014. The results showed that, during those years, the evaluation value of water environment carrying capacity ranged from 0.23 to 0.46 in Yunnan Province.The minimum value was 0.23 in 2013, the maximum value was 0.46 in 2010. From 2006 to 2014, the evaluation value of water environment carrying capacity was less than 0.5 in general, and the water environment in a fragile state on the whole. 展开更多
关键词 water ENVIRONMENT carrying capacity Evaluation INDEX system model CHROMATOGRAPHY analysis method YUNNAN PROVINCE
下载PDF
Exploration of the dynamic water resource carrying capacity of the Keriya River Basin on the southern margin of the Taklimakan Desert,China 被引量:4
19
作者 Shuhong Yang Tao Yang 《Regional Sustainability》 2021年第1期73-82,共10页
The water resource carrying capacity(WRCC)in river basin changes dynamically under climate change,economic development,and technological advancement.Climate change affects hydrological processes and spatial/temporal d... The water resource carrying capacity(WRCC)in river basin changes dynamically under climate change,economic development,and technological advancement.Climate change affects hydrological processes and spatial/temporal distribution of water resources;while economic develo-ment and technological advancement can also affect the balance of water resources systems.Under climate change,economic development,and technological advancement,itis of great significance to explore the dynamic behavior of WRCC in river basins.This will help to alleviate water resources security issues and build a sustainable water resources system.This study was carried out to evaluate the dynamic WRCC using the"climate,economics,and technology-control objective inversion mode",which used total water consumption,water-use efficiency,and restrained total pollutant control in the water functional area as boundary conditions.This study was conducted on the Keriya River Basin,a sub-catchment located in southem margin of the Taklimakan Desert.The WRCC in the Keriya River Basin in 2015 was calculated,and the trends in the short term(2020),middle tem(2030),and long term(2050)were predicted.The results revealed that climate change factors have a positive effect on WRCC in the Keriya River Basin,which leads to an increase in total water resources.Economic and technological development exhibits an overall positive effect,while increasing in water consumption and sewage discharge exhibit a negative effect. 展开更多
关键词 Climate change Economic development Technological advancement water resource carrying capacity Keriya River Basin
下载PDF
Assessment of Comprehensive Carrying Capacity of Land Resources Based on Land Functions 被引量:1
20
作者 Wei GUO 《Asian Agricultural Research》 2016年第9期53-57,共5页
Based on relevant research results,from the perspective of land use functions,an evaluation indicator system of carrying capacity of land resources composed of three second-grade indicators( production,living and ecol... Based on relevant research results,from the perspective of land use functions,an evaluation indicator system of carrying capacity of land resources composed of three second-grade indicators( production,living and ecological carrying capacity) including 24 third-grade indicators was established,and the carrying capacity of land resources in ten cities of Shaanxi Province in 2013 was assessed and analyzed by using mean square error analysis method and hierarchical clustering method. The results showed that the three types of carrying capacity in most cities of Shaanxi Province are shown as follows: ecological carrying capacity > living carrying capacity > production carrying capacity,and the differences between various regions in a single type of carrying capacity basically accorded with the actual situation of development in each city; there were obvious differences between various cities in the comprehensive carrying capacity of land resources,which was basically consistent with regional economic and social development. 展开更多
关键词 carrying capacity Land resources Mean square error analysis method Cluster analysis method
下载PDF
上一页 1 2 86 下一页 到第
使用帮助 返回顶部